• Title/Summary/Keyword: long term neural network

Search Result 395, Processing Time 0.026 seconds

Malware Detection Using Deep Recurrent Neural Networks with no Random Initialization

  • Amir Namavar Jahromi;Sattar Hashemi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.177-189
    • /
    • 2023
  • Malware detection is an increasingly important operational focus in cyber security, particularly given the fast pace of such threats (e.g., new malware variants introduced every day). There has been great interest in exploring the use of machine learning techniques in automating and enhancing the effectiveness of malware detection and analysis. In this paper, we present a deep recurrent neural network solution as a stacked Long Short-Term Memory (LSTM) with a pre-training as a regularization method to avoid random network initialization. In our proposal, we use global and short dependencies of the inputs. With pre-training, we avoid random initialization and are able to improve the accuracy and robustness of malware threat hunting. The proposed method speeds up the convergence (in comparison to stacked LSTM) by reducing the length of malware OpCode or bytecode sequences. Hence, the complexity of our final method is reduced. This leads to better accuracy, higher Mattews Correlation Coefficients (MCC), and Area Under the Curve (AUC) in comparison to a standard LSTM with similar detection time. Our proposed method can be applied in real-time malware threat hunting, particularly for safety critical systems such as eHealth or Internet of Military of Things where poor convergence of the model could lead to catastrophic consequences. We evaluate the effectiveness of our proposed method on Windows, Ransomware, Internet of Things (IoT), and Android malware datasets using both static and dynamic analysis. For the IoT malware detection, we also present a comparative summary of the performance on an IoT-specific dataset of our proposed method and the standard stacked LSTM method. More specifically, of our proposed method achieves an accuracy of 99.1% in detecting IoT malware samples, with AUC of 0.985, and MCC of 0.95; thus, outperforming standard LSTM based methods in these key metrics.

Very Short- and Long-Term Prediction Method for Solar Power (초 장단기 통합 태양광 발전량 예측 기법)

  • Mun Seop Yun;Se Ryung Lim;Han Seung Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1143-1150
    • /
    • 2023
  • The global climate crisis and the implementation of low-carbon policies have led to a growing interest in renewable energy and a growing number of related industries. Among them, solar power is attracting attention as a representative eco-friendly energy that does not deplete and does not emit pollutants or greenhouse gases. As a result, the supplement of solar power facility is increasing all over the world. However, solar power is easily affected by the environment such as geography and weather, so accurate solar power forecast is important for stable operation and efficient management. However, it is very hard to predict the exact amount of solar power using statistical methods. In addition, the conventional prediction methods have focused on only short- or long-term prediction, which causes to take long time to obtain various prediction models with different prediction horizons. Therefore, this study utilizes a many-to-many structure of a recurrent neural network (RNN) to integrate short-term and long-term predictions of solar power generation. We compare various RNN-based very short- and long-term prediction methods for solar power in terms of MSE and R2 values.

A Systems Engineering Approach for Predicting NPP Response under Steam Generator Tube Rupture Conditions using Machine Learning

  • Tran Canh Hai, Nguyen;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.94-107
    • /
    • 2022
  • Accidents prevention and mitigation is the highest priority of nuclear power plant (NPP) operation, particularly in the aftermath of the Fukushima Daiichi accident, which has reignited public anxieties and skepticism regarding nuclear energy usage. To deal with accident scenarios more effectively, operators must have ample and precise information about key safety parameters as well as their future trajectories. This work investigates the potential of machine learning in forecasting NPP response in real-time to provide an additional validation method and help reduce human error, especially in accident situations where operators are under a lot of stress. First, a base-case SGTR simulation is carried out by the best-estimate code RELAP5/MOD3.4 to confirm the validity of the model against results reported in the APR1400 Design Control Document (DCD). Then, uncertainty quantification is performed by coupling RELAP5/MOD3.4 and the statistical tool DAKOTA to generate a large enough dataset for the construction and training of neural-based machine learning (ML) models, namely LSTM, GRU, and hybrid CNN-LSTM. Finally, the accuracy and reliability of these models in forecasting system response are tested by their performance on fresh data. To facilitate and oversee the process of developing the ML models, a Systems Engineering (SE) methodology is used to ensure that the work is consistently in line with the originating mission statement and that the findings obtained at each subsequent phase are valid.

Contextual Modeling in Context-Aware Conversation Systems

  • Quoc-Dai Luong Tran;Dinh-Hong Vu;Anh-Cuong Le;Ashwin Ittoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1396-1412
    • /
    • 2023
  • Conversation modeling is an important and challenging task in the field of natural language processing because it is a key component promoting the development of automated humanmachine conversation. Most recent research concerning conversation modeling focuses only on the current utterance (considered as the current question) to generate a response, and thus fails to capture the conversation's logic from its beginning. Some studies concatenate the current question with previous conversation sentences and use it as input for response generation. Another approach is to use an encoder to store all previous utterances. Each time a new question is encountered, the encoder is updated and used to generate the response. Our approach in this paper differs from previous studies in that we explicitly separate the encoding of the question from the encoding of its context. This results in different encoding models for the question and the context, capturing the specificity of each. In this way, we have access to the entire context when generating the response. To this end, we propose a deep neural network-based model, called the Context Model, to encode previous utterances' information and combine it with the current question. This approach satisfies the need for context information while keeping the different roles of the current question and its context separate while generating a response. We investigate two approaches for representing the context: Long short-term memory and Convolutional neural network. Experiments show that our Context Model outperforms a baseline model on both ConvAI2 Dataset and a collected dataset of conversational English.

Utilizing Artificial Neural Networks for Establishing Hearing-Loss Predicting Models Based on a Longitudinal Dataset and Their Implications for Managing the Hearing Conservation Program

  • Thanawat Khajonklin;Yih-Min Sun;Yue-Liang Leon Guo;Hsin-I Hsu;Chung Sik Yoon;Cheng-Yu Lin;Perng-Jy Tsai
    • Safety and Health at Work
    • /
    • v.15 no.2
    • /
    • pp.220-227
    • /
    • 2024
  • Background: Though the artificial neural network (ANN) technique has been used to predict noise-induced hearing loss (NIHL), the established prediction models have primarily relied on cross-sectional datasets, and hence, they may not comprehensively capture the chronic nature of NIHL as a disease linked to long-term noise exposure among workers. Methods: A comprehensive dataset was utilized, encompassing eight-year longitudinal personal hearing threshold levels (HTLs) as well as information on seven personal variables and two environmental variables to establish NIHL predicting models through the ANN technique. Three subdatasets were extracted from the afirementioned comprehensive dataset to assess the advantages of the present study in NIHL predictions. Results: The dataset was gathered from 170 workers employed in a steel-making industry, with a median cumulative noise exposure and HTL of 88.40 dBA-year and 19.58 dB, respectively. Utilizing the longitudinal dataset demonstrated superior prediction capabilities compared to cross-sectional datasets. Incorporating the more comprehensive dataset led to improved NIHL predictions, particularly when considering variables such as noise pattern and use of personal protective equipment. Despite fluctuations observed in the measured HTLs, the ANN predicting models consistently revealed a discernible trend. Conclusions: A consistent correlation was observed between the measured HTLs and the results obtained from the predicting models. However, it is essential to exercise caution when utilizing the model-predicted NIHLs for individual workers due to inherent personal fluctuations in HTLs. Nonetheless, these ANN models can serve as a valuable reference for the industry in effectively managing its hearing conservation program.

A Study on Performance Improvement of Recurrent Neural Networks Algorithm using Word Group Expansion Technique (단어그룹 확장 기법을 활용한 순환신경망 알고리즘 성능개선 연구)

  • Park, Dae Seung;Sung, Yeol Woo;Kim, Cheong Ghil
    • Journal of Industrial Convergence
    • /
    • v.20 no.4
    • /
    • pp.23-30
    • /
    • 2022
  • Recently, with the development of artificial intelligence (AI) and deep learning, the importance of conversational artificial intelligence chatbots is being highlighted. In addition, chatbot research is being conducted in various fields. To build a chatbot, it is developed using an open source platform or a commercial platform for ease of development. These chatbot platforms mainly use RNN and application algorithms. The RNN algorithm has the advantages of fast learning speed, ease of monitoring and verification, and good inference performance. In this paper, a method for improving the inference performance of RNNs and applied algorithms was studied. The proposed method used the word group expansion learning technique of key words for each sentence when RNN and applied algorithm were applied. As a result of this study, the RNN, GRU, and LSTM three algorithms with a cyclic structure achieved a minimum of 0.37% and a maximum of 1.25% inference performance improvement. The research results obtained through this study can accelerate the adoption of artificial intelligence chatbots in related industries. In addition, it can contribute to utilizing various RNN application algorithms. In future research, it will be necessary to study the effect of various activation functions on the performance improvement of artificial neural network algorithms.

Prediction of Dormant Customer in the Card Industry (카드산업에서 휴면 고객 예측)

  • DongKyu Lee;Minsoo Shin
    • Journal of Service Research and Studies
    • /
    • v.13 no.2
    • /
    • pp.99-113
    • /
    • 2023
  • In a customer-based industry, customer retention is the competitiveness of a company, and improving customer retention improves the competitiveness of the company. Therefore, accurate prediction and management of potential dormant customers is paramount to increasing the competitiveness of the enterprise. In particular, there are numerous competitors in the domestic card industry, and the government is introducing an automatic closing system for dormant card management. As a result of these social changes, the card industry must focus on better predicting and managing potential dormant cards, and better predicting dormant customers is emerging as an important challenge. In this study, the Recurrent Neural Network (RNN) methodology was used to predict potential dormant customers in the card industry, and in particular, Long-Short Term Memory (LSTM) was used to efficiently learn data for a long time. In addition, to redefine the variables needed to predict dormant customers in the card industry, Unified Theory of Technology (UTAUT), an integrated technology acceptance theory, was applied to redefine and group the variables used in the model. As a result, stable model accuracy and F-1 score were obtained, and Hit-Ratio proved that models using LSTM can produce stable results compared to other algorithms. It was also found that there was no moderating effect of demographic information that could occur in UTAUT, which was pointed out in previous studies. Therefore, among variable selection models using UTAUT, dormant customer prediction models using LSTM are proven to have non-biased stable results. This study revealed that there may be academic contributions to the prediction of dormant customers using LSTM algorithms that can learn well from previously untried time series data. In addition, it is a good example to show that it is possible to respond to customers who are preemptively dormant in terms of customer management because it is predicted at a time difference with the actual dormant capture, and it is expected to contribute greatly to the industry.

Feature Selection with Ensemble Learning for Prostate Cancer Prediction from Gene Expression

  • Abass, Yusuf Aleshinloye;Adeshina, Steve A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.526-538
    • /
    • 2021
  • Machine and deep learning-based models are emerging techniques that are being used to address prediction problems in biomedical data analysis. DNA sequence prediction is a critical problem that has attracted a great deal of attention in the biomedical domain. Machine and deep learning-based models have been shown to provide more accurate results when compared to conventional regression-based models. The prediction of the gene sequence that leads to cancerous diseases, such as prostate cancer, is crucial. Identifying the most important features in a gene sequence is a challenging task. Extracting the components of the gene sequence that can provide an insight into the types of mutation in the gene is of great importance as it will lead to effective drug design and the promotion of the new concept of personalised medicine. In this work, we extracted the exons in the prostate gene sequences that were used in the experiment. We built a Deep Neural Network (DNN) and Bi-directional Long-Short Term Memory (Bi-LSTM) model using a k-mer encoding for the DNA sequence and one-hot encoding for the class label. The models were evaluated using different classification metrics. Our experimental results show that DNN model prediction offers a training accuracy of 99 percent and validation accuracy of 96 percent. The bi-LSTM model also has a training accuracy of 95 percent and validation accuracy of 91 percent.

Emotion Recognition in Arabic Speech from Saudi Dialect Corpus Using Machine Learning and Deep Learning Algorithms

  • Hanaa Alamri;Hanan S. Alshanbari
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.9-16
    • /
    • 2023
  • Speech can actively elicit feelings and attitudes by using words. It is important for researchers to identify the emotional content contained in speech signals as well as the sort of emotion that resulted from the speech that was made. In this study, we studied the emotion recognition system using a database in Arabic, especially in the Saudi dialect, the database is from a YouTube channel called Telfaz11, The four emotions that were examined were anger, happiness, sadness, and neutral. In our experiments, we extracted features from audio signals, such as Mel Frequency Cepstral Coefficient (MFCC) and Zero-Crossing Rate (ZCR), then we classified emotions using many classification algorithms such as machine learning algorithms (Support Vector Machine (SVM) and K-Nearest Neighbor (KNN)) and deep learning algorithms such as (Convolution Neural Network (CNN) and Long Short-Term Memory (LSTM)). Our Experiments showed that the MFCC feature extraction method and CNN model obtained the best accuracy result with 95%, proving the effectiveness of this classification system in recognizing Arabic spoken emotions.

Developing radar-based rainfall prediction model with GAN(Generative Adversarial Network) (생성적 적대 신경망(GAN)을 활용한 강우예측모델 개발)

  • Choi, Suyeon;Sohn, Soyoung;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.185-185
    • /
    • 2021
  • 기후변화로 인한 돌발 강우 등 이상 기후 현상이 증가함에 따라 정확한 강우예측의 중요성은 더 증가하는 추세이다. 전통적인 강우예측의 경우 기상수치모델 또는 외삽법을 이용한 레이더 기반 강우예측 기법을 이용하며, 최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 개발되고 있다. 기존 머신러닝을 이용한 강우예측 모델의 경우 주로 시계열 이미지 예측에 적합한 2차원 순환 신경망 기반 기법(Convolutional Long Short-Term Memory, ConvLSTM) 또는 합성곱 신경망 기반 기법(Convolutional Neural Network(CNN) Encoder-Decoder) 등을 이용한다. 본 연구에서는 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용해 미래 강우예측을 수행하도록 하였다. GAN 방법론은 이미지를 생성하는 생성자와 이를 실제 이미지와 구분하는 구별자가 경쟁하며 학습되어 현재 이미지 생성 분야에서 높은 성능을 보여주고 있다. 본 연구에서 개발한 GAN 기반 모델은 기상청에서 제공된 2016년~2019년까지의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시키고, 2020년 레이더 이미지 자료를 이용해 단기강우예측을 모의하였다. 또한, 기존 머신러닝 기법을 기반으로 한 모델들의 강우예측결과와 GAN 기반 모델의 강우예측결과를 비교분석한 결과, 본 연구를 통해 개발한 강우예측모델이 단기강우예측에 뛰어난 성능을 보이는 것을 확인할 수 있었다.

  • PDF