• Title/Summary/Keyword: long term neural network

Search Result 394, Processing Time 0.027 seconds

Error Analysis of Measure-Correlate-Predict Methods for Long-Term Correction of Wind Data

  • Vaas, Franz;Kim, Hyun-Goo;Seo, Hyun-Soo;Kim, Seok-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.278-281
    • /
    • 2008
  • In these days the installation of wind turbines or wind parks includes a high financial risk. So for the planning and the constructing of wind farms, long-term data of wind speed and wind direction is required. However, in most cases only few data are available at the designated places. Traditional Measure-Correlate-Predict (MCP) can extend this data by using data of nearby meteorological stations. But also Neural Networks can create such long-term predictions. The key issue of this paper is to demonstrate the possibility and the quality of predictions using Neural Networks. Thereto this paper compares the results of different MCP Models and Neural Networks for creating long-term data with various indexes.

  • PDF

Comparative Study of Performance of Deep Learning Algorithms in Particulate Matter Concentration Prediction (미세먼지 농도 예측을 위한 딥러닝 알고리즘별 성능 비교)

  • Cho, Kyoung-Woo;Jung, Yong-jin;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.409-414
    • /
    • 2021
  • The growing concerns on the emission of particulate matter has prompted a demand for highly reliable particulate matter forecasting. Currently, several studies on particulate matter prediction use various deep learning algorithms. In this study, we compared the predictive performances of typical neural networks used for particulate matter prediction. We used deep neural network(DNN), recurrent neural network, and long short-term memory algorithms to design an optimal predictive model on the basis of a hyperparameter search. The results of a comparative analysis of the predictive performances of the models indicate that the variation trend of the actual and predicted values generally showed a good performance. In the analysis based on the root mean square error and accuracy, the DNN-based prediction model showed a higher reliability for prediction errors compared with the other prediction models.

Abusive Detection Using Bidirectional Long Short-Term Memory Networks (양방향 장단기 메모리 신경망을 이용한 욕설 검출)

  • Na, In-Seop;Lee, Sin-Woo;Lee, Jae-Hak;Koh, Jin-Gwang
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.35-45
    • /
    • 2019
  • Recently, the damage with social cost of malicious comments is increasing. In addition to the news of talent committing suicide through the effects of malicious comments. The damage to malicious comments including abusive language and slang is increasing and spreading in various type and forms throughout society. In this paper, we propose a technique for detecting abusive language using a bi-directional long short-term memory neural network model. We collected comments on the web through the web crawler and processed the stopwords on unused words such as English Alphabet or special characters. For the stopwords processed comments, the bidirectional long short-term memory neural network model considering the front word and back word of sentences was used to determine and detect abusive language. In order to use the bi-directional long short-term memory neural network, the detected comments were subjected to morphological analysis and vectorization, and each word was labeled with abusive language. Experimental results showed a performance of 88.79% for a total of 9,288 comments screened and collected.

  • PDF

Tunnel-Lining Back Analysis for Characterizing Seepage and Rock Motion (투수 및 암반거동 파악을 위한 터널 라이닝의 역해석)

  • Choi Joon-Woo;Lee In-Mo;Kong Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.248-255
    • /
    • 2006
  • Among a variety of influencing components, time-variant seepage and long-term underground motion are important to understand the abnormal behavior of tunnels. Excessiveness of these two components could be the direct cause of severe damage on tunnels. however, it is not easy to quantify the effect of these on the behavior of tunnels. These parameters can be estimated by using inverse methods once the appropriate relationship between inputs and results are clarified. Various inverse methods or parameter estimation techniques such as artificial neural network and least square method can be used depending on the characteristics of given problems. Numerical analyses, experiments, or monitoring results are frequently used to prepare a set of inputs and results to establish the back analysis models. In this study, a back analysis method has been developed to estimate geotechnically hard-to-known parameters such as permeability of tunnel filter, underground water table, long-term rock mass load, size of damaged zone associated with seepage and long-term underground motion. The artificial neural network technique is adopted and the numerical models developed in the firstpart are used to prepare a set of data for learning process. Tunnel behavior especially the displacements of the lining has been exclusively investigated for the back analysis.

  • PDF

Tidal Level Prediction of Busan Port using Long Short-Term Memory (Long Short-Term Memory를 이용한 부산항 조위 예측)

  • Kim, Hae Lim;Jeon, Yong-Ho;Park, Jae-Hyung;Yoon, Han-sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.469-476
    • /
    • 2022
  • This study developed a Recurrent Neural Network model implemented through Long Short-Term Memory (LSTM) that generates long-term tidal level data at Busan Port using tide observation data. The tide levels in Busan Port were predicted by the Korea Hydrographic and Oceanographic Administration (KHOA) using the tide data observed at Busan New Port and Tongyeong as model input data. The model was trained for one month in January 2019, and subsequently, the accuracy was calculated for one year from February 2019 to January 2020. The constructed model showed the highest performance with a correlation coefficient of 0.997 and a root mean squared error of 2.69 cm when the tide time series of Busan New Port and Tongyeong were inputted together. The study's finding reveal that long-term tidal level data prediction of an arbitrary port is possible using the deep learning recurrent neural network model.

Development of Deep Learning Models for Multi-class Sentiment Analysis (딥러닝 기반의 다범주 감성분석 모델 개발)

  • Syaekhoni, M. Alex;Seo, Sang Hyun;Kwon, Young S.
    • Journal of Information Technology Services
    • /
    • v.16 no.4
    • /
    • pp.149-160
    • /
    • 2017
  • Sentiment analysis is the process of determining whether a piece of document, text or conversation is positive, negative, neural or other emotion. Sentiment analysis has been applied for several real-world applications, such as chatbot. In the last five years, the practical use of the chatbot has been prevailing in many field of industry. In the chatbot applications, to recognize the user emotion, sentiment analysis must be performed in advance in order to understand the intent of speakers. The specific emotion is more than describing positive or negative sentences. In light of this context, we propose deep learning models for conducting multi-class sentiment analysis for identifying speaker's emotion which is categorized to be joy, fear, guilt, sad, shame, disgust, and anger. Thus, we develop convolutional neural network (CNN), long short term memory (LSTM), and multi-layer neural network models, as deep neural networks models, for detecting emotion in a sentence. In addition, word embedding process was also applied in our research. In our experiments, we have found that long short term memory (LSTM) model performs best compared to convolutional neural networks and multi-layer neural networks. Moreover, we also show the practical applicability of the deep learning models to the sentiment analysis for chatbot.

Using Neural Networks to Forecast Price in Competitive Power Markets

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.271-274
    • /
    • 2005
  • Under competitive power markets, various long-term and short-term contracts based on spot price are used by producers and consumers. So an accurate forecasting for spot price allow market participants to develop bidding strategies in order to maximize their benefit. Artificial Neural Network is a powerful method in forecasting problem. In this paper we used Radial Basis Function(RBF) network to forecast spot price. To learn ANN, in addition to price history, we used some other effective inputs such as load level, fuel price, generation and transmission facilities situation. Results indicate that this forecasting method is accurate and useful.

  • PDF

Network Traffic Classification Based on Deep Learning

  • Li, Junwei;Pan, Zhisong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4246-4267
    • /
    • 2020
  • As the network goes deep into all aspects of people's lives, the number and the complexity of network traffic is increasing, and traffic classification becomes more and more important. How to classify them effectively is an important prerequisite for network management and planning, and ensuring network security. With the continuous development of deep learning, more and more traffic classification begins to use it as the main method, which achieves better results than traditional classification methods. In this paper, we provide a comprehensive review of network traffic classification based on deep learning. Firstly, we introduce the research background and progress of network traffic classification. Then, we summarize and compare traffic classification based on deep learning such as stack autoencoder, one-dimensional convolution neural network, two-dimensional convolution neural network, three-dimensional convolution neural network, long short-term memory network and Deep Belief Networks. In addition, we compare traffic classification based on deep learning with other methods such as based on port number, deep packets detection and machine learning. Finally, the future research directions of network traffic classification based on deep learning are prospected.

The Optimal Combination of Neural Networks for Next Day Electric Peak Load Forecasting

  • Konishi, Hiroyasu;Izumida, Masanori;Murakami, Kenji
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1037-1040
    • /
    • 2000
  • We introduce the forecasting method for a next day electric peak load that uses the optimal combination of two types of neural networks. First network uses learning data that are past 10days of the target day. We name the neural network Short Term Neural Network (STNN). Second network uses those of last year. We name the neural network Long Term Neural Network (LTNN). Then we get the forecasting results that are the linear combination of the forecasting results by STNN and the forecasting results by LTNN. We name the method Combination Forecasting Method (CFM). Then we discuss the optimal combination of STNN and LTNN. Using CFM of the optimal combination of STNN and LTNN, we can reduce the forecasting error.

  • PDF

A SE Approach for Machine Learning Prediction of the Response of an NPP Undergoing CEA Ejection Accident

  • Ditsietsi Malale;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.18-31
    • /
    • 2023
  • Exploring artificial intelligence and machine learning for nuclear safety has witnessed increased interest in recent years. To contribute to this area of research, a machine learning model capable of accurately predicting nuclear power plant response with minimal computational cost is proposed. To develop a robust machine learning model, the Best Estimate Plus Uncertainty (BEPU) approach was used to generate a database to train three models and select the best of the three. The BEPU analysis was performed by coupling Dakota platform with the best estimate thermal hydraulics code RELAP/SCDAPSIM/MOD 3.4. The Code Scaling Applicability and Uncertainty approach was adopted, along with Wilks' theorem to obtain a statistically representative sample that satisfies the USNRC 95/95 rule with 95% probability and 95% confidence level. The generated database was used to train three models based on Recurrent Neural Networks; specifically, Long Short-Term Memory, Gated Recurrent Unit, and a hybrid model with Long Short-Term Memory coupled to Convolutional Neural Network. In this paper, the System Engineering approach was utilized to identify requirements, stakeholders, and functional and physical architecture to develop this project and ensure success in verification and validation activities necessary to ensure the efficient development of ML meta-models capable of predicting of the nuclear power plant response.