• Title/Summary/Keyword: long term neural network

Search Result 395, Processing Time 0.038 seconds

Long-Term Measurement of Static Strains of Jacket Type Offshore Structure under Severe Tidal Current Environments (빠른 조류 환경에서의 재킷식 해양구조물 시공 중 및 운영 중 장기 변형률 계측 및 분석)

  • Yi, Jin-Hak;Park, Jin-Soon;Park, Jun-Seok;Lee, Kwang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.389-398
    • /
    • 2012
  • In this study, structural strain responses of the jacket-type Uldolmok tidal current power plant structure under severe tidal environments were measured and analyzed using long-term measurement system during construction and also operation. It was observed that there were significant changes in strain responses at the steps of jacket lifting, block loading, pile ejection and insertion. Strains due to dead loads and tidal loads were analyzed before and after removal of a jacket leg, and it was also found that the strains due to dead load were much significantly changed after jacket leg removal. From the measurement data during operation, it was found that strain responses were fluctuated with M2 and M4 tidal periods and also relatively short period of about 10 min due to the peculiar tidal characteristics in the Uldolmok strait. Finally, the neural network-based non-parametric estimation models were investigated to build up the signal-based structural damage monitoring system.

Prediction for Energy Demand Using 1D-CNN and Bidirectional LSTM in Internet of Energy (에너지인터넷에서 1D-CNN과 양방향 LSTM을 이용한 에너지 수요예측)

  • Jung, Ho Cheul;Sun, Young Ghyu;Lee, Donggu;Kim, Soo Hyun;Hwang, Yu Min;Sim, Issac;Oh, Sang Keun;Song, Seung-Ho;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.134-142
    • /
    • 2019
  • As the development of internet of energy (IoE) technologies and spread of various electronic devices have diversified patterns of energy consumption, the reliability of demand prediction has decreased, causing problems in optimization of power generation and stabilization of power supply. In this study, we propose a deep learning method, 1-Dimention-Convolution and Bidirectional Long Short-Term Memory (1D-ConvBLSTM), that combines a convolution neural network (CNN) and a Bidirectional Long Short-Term Memory(BLSTM) for highly reliable demand forecasting by effectively extracting the energy consumption pattern. In experimental results, the demand is predicted with the proposed deep learning method for various number of learning iterations and feature maps, and it is verified that the test data is predicted with a small number of iterations.

Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea

  • Lim, Heesung;An, Hyunuk;Choi, Eunhyuk;Kim, Yeonsu
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1029-1037
    • /
    • 2020
  • The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.

Forecasting Fish Import Using Deep Learning: A Comprehensive Analysis of Two Different Fish Varieties in South Korea

  • Abhishek Chaudhary;Sunoh Choi
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.134-144
    • /
    • 2023
  • Nowadays, Deep Learning (DL) technology is being used in several government departments. South Korea imports a lot of seafood. If the demand for fishery products is not accurately predicted, then there will be a shortage of fishery products and the price of the fishery product may rise sharply. So, South Korea's Ministry of Ocean and Fisheries is attempting to accurately predict seafood imports using deep learning. This paper introduces the solution for the fish import prediction in South Korea using the Long Short-Term Memory (LSTM) method. It was found that there was a huge gap between the sum of consumption and export against the sum of production especially in the case of two species that are Hairtail and Pollock. An import prediction is suggested in this research to fill the gap with some advanced Deep Learning methods. This research focuses on import prediction using Machine Learning (ML) and Deep Learning methods to predict the import amount more precisely. For the prediction, two Deep Learning methods were chosen which are Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM). Moreover, the Machine Learning method was also selected for the comparison between the DL and ML. Root Mean Square Error (RMSE) was selected for the error measurement which shows the difference between the predicted and actual values. The results obtained were compared with the average RMSE scores and in terms of percentage. It was found that the LSTM has the lowest RMSE score which showed the prediction with higher accuracy. Meanwhile, ML's RMSE score was higher which shows lower accuracy in prediction. Moreover, Google Trend Search data was used as a new feature to find its impact on prediction outcomes. It was found that it had a positive impact on results as the RMSE values were lowered, increasing the accuracy of the prediction.

Shanghai Containerised Freight Index Forecasting Based on Deep Learning Methods: Evidence from Chinese Futures Markets

  • Liang Chen;Jiankun Li;Rongyu Pei;Zhenqing Su;Ziyang Liu
    • East Asian Economic Review
    • /
    • v.28 no.3
    • /
    • pp.359-388
    • /
    • 2024
  • With the escalation of global trade, the Chinese commodity futures market has ascended to a pivotal role within the international shipping landscape. The Shanghai Containerized Freight Index (SCFI), a leading indicator of the shipping industry's health, is particularly sensitive to the vicissitudes of the Chinese commodity futures sector. Nevertheless, a significant research gap exists regarding the application of Chinese commodity futures prices as predictive tools for the SCFI. To address this gap, the present study employs a comprehensive dataset spanning daily observations from March 24, 2017, to May 27, 2022, encompassing a total of 29,308 data points. We have crafted an innovative deep learning model that synergistically combines Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) architectures. The outcomes show that the CNN-LSTM model does a great job of finding the nonlinear dynamics in the SCFI dataset and accurately capturing its long-term temporal dependencies. The model can handle changes in random sample selection, data frequency, and structural shifts within the dataset. It achieved an impressive R2 of 96.6% and did better than the LSTM and CNN models that were used alone. This research underscores the predictive prowess of the Chinese futures market in influencing the Shipping Cost Index, deepening our understanding of the intricate relationship between the shipping industry and the financial sphere. Furthermore, it broadens the scope of machine learning applications in maritime transportation management, paving the way for SCFI forecasting research. The study's findings offer potent decision-support tools and risk management solutions for logistics enterprises, shipping corporations, and governmental entities.

The Development of Efficient Multimedia Retrieval System of the Object-Based using the Hippocampal Neural Network (해마신경망을 이용한 관심 객체 기반의 효율적인 멀티미디어 검색 시스템의 개발)

  • Jeong Seok-Hoon;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.57-64
    • /
    • 2006
  • Tn this paper, We propose a user friendly object-based multimedia retrieval system using the HCNN(HippoCampus Neural Network. Most existing approaches to content-based retrieval rely on query by example or user based low-level features such as color, shape, texture. In this paper we perform a scene change detection and key frame extraction for the compressed video stream that is video compression standard such as MPEG. We propose a method for automatic color object extraction and ACE(Adaptive Circular filter and Edge) of content-based multimedia retrieval system. And we compose multimedia retrieval system after learned by the HCNN such extracted features. Proposed HCNN makes an adaptive real-time content-based multimedia retrieval system using excitatory teaming method that forwards important features to long-term memories and inhibitory learning method that forwards unimportant features to short-term memories controlled by impression.

Application of Artificial Neural Network Ensemble Model Considering Long-term Climate Variability: Case Study of Dam Inflow Forecasting in Han-River Basin (장기 기후 변동성을 고려한 인공신경망 앙상블 모형 적용: 한강 유역 댐 유입량 예측을 중심으로)

  • Kim, Taereem;Joo, Kyungwon;Cho, Wanhee;Heo, Jun-Haeng
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.61-68
    • /
    • 2019
  • Recently, climate indices represented by quantifying atmospheric-ocean circulation patterns have been widely used to predict hydrologic variables for considering long-term climate variability. Hydrologic forecasting models based on artificial neural networks have been developed to provide accurate and stable forecasting performance. Forecasts of hydrologic variables considering climate variability can be effectively used for long-term management of water resources and environmental preservation. Therefore, identifying significant indicators for hydrologic variables and applying forecasting models still remains as a challenge. In this study, we selected representative climate indices that have significant relationships with dam inflow time series in the Han-River basin, South Korea for applying the dam inflow forecasting model. For this purpose, the ensemble empirical mode decomposition(EEMD) method was used to identify a significance between dam inflow and climate indices and an artificial neural network(ANN) ensemble model was applied to overcome the limitation of a single ANN model. As a result, the forecasting performances showed that the mean correlation coefficient of the five dams in the training period is 0.88, and the test period is 0.68. It can be expected to come out various applications using the relationship between hydrologic variables and climate variability in South Korea.

Video Saliency Detection Using Bi-directional LSTM

  • Chi, Yang;Li, Jinjiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2444-2463
    • /
    • 2020
  • Significant detection of video can more rationally allocate computing resources and reduce the amount of computation to improve accuracy. Deep learning can extract the edge features of the image, providing technical support for video saliency. This paper proposes a new detection method. We combine the Convolutional Neural Network (CNN) and the Deep Bidirectional LSTM Network (DB-LSTM) to learn the spatio-temporal features by exploring the object motion information and object motion information to generate video. A continuous frame of significant images. We also analyzed the sample database and found that human attention and significant conversion are time-dependent, so we also considered the significance detection of video cross-frame. Finally, experiments show that our method is superior to other advanced methods.

Malaysian Name-based Ethnicity Classification using LSTM

  • Hur, Youngbum
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3855-3867
    • /
    • 2022
  • Name separation (splitting full names into surnames and given names) is not a tedious task in a multiethnic country because the procedure for splitting surnames and given names is ethnicity-specific. Malaysia has multiple main ethnic groups; therefore, separating Malaysian full names into surnames and given names proves a challenge. In this study, we develop a two-phase framework for Malaysian name separation using deep learning. In the initial phase, we predict the ethnicity of full names. We propose a recurrent neural network with long short-term memory network-based model with character embeddings for prediction. Based on the predicted ethnicity, we use a rule-based algorithm for splitting full names into surnames and given names in the second phase. We evaluate the performance of the proposed model against various machine learning models and demonstrate that it outperforms them by an average of 9%. Moreover, transfer learning and fine-tuning of the proposed model with an additional dataset results in an improvement of up to 7% on average.

Reconstruction of Terrestrial Water Storage of GRACE/GFO Using Convolutional Neural Network and Climate Data

  • Jeon, Woohyu;Kim, Jae-Seung;Seo, Ki-Weon
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.445-458
    • /
    • 2021
  • Gravity Recovery and Climate Experiment (GRACE) gravimeter satellites observed the Earth gravity field with unprecedented accuracy since 2002. After the termination of GRACE mission, GRACE Follow-on (GFO) satellites successively observe global gravity field, but there is missing period between GRACE and GFO about one year. Many previous studies estimated terrestrial water storage (TWS) changes using hydrological models, vertical displacements from global navigation satellite system observations, altimetry, and satellite laser ranging for a continuity of GRACE and GFO data. Recently, in order to predict TWS changes, various machine learning methods are developed such as artificial neural network and multi-linear regression. Previous studies used hydrological and climate data simultaneously as input data of the learning process. Further, they excluded linear trends in input data and GRACE/GFO data because the trend components obtained from GRACE/GFO data were assumed to be the same for other periods. However, hydrological models include high uncertainties, and observational period of GRACE/GFO is not long enough to estimate reliable TWS trends. In this study, we used convolutional neural networks (CNN) method incorporating only climate data set (temperature, evaporation, and precipitation) to predict TWS variations in the missing period of GRACE/GFO. We also make CNN model learn the linear trend of GRACE/GFO data. In most river basins considered in this study, our CNN model successfully predicts seasonal and long-term variations of TWS change.