• Title/Summary/Keyword: long term neural network

Search Result 395, Processing Time 0.045 seconds

RDNN: Rumor Detection Neural Network for Veracity Analysis in Social Media Text

  • SuthanthiraDevi, P;Karthika, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3868-3888
    • /
    • 2022
  • A widely used social networking service like Twitter has the ability to disseminate information to large groups of people even during a pandemic. At the same time, it is a convenient medium to share irrelevant and unverified information online and poses a potential threat to society. In this research, conventional machine learning algorithms are analyzed to classify the data as either non-rumor data or rumor data. Machine learning techniques have limited tuning capability and make decisions based on their learning. To tackle this problem the authors propose a deep learning-based Rumor Detection Neural Network model to predict the rumor tweet in real-world events. This model comprises three layers, AttCNN layer is used to extract local and position invariant features from the data, AttBi-LSTM layer to extract important semantic or contextual information and HPOOL to combine the down sampling patches of the input feature maps from the average and maximum pooling layers. A dataset from Kaggle and ground dataset #gaja are used to train the proposed Rumor Detection Neural Network to determine the veracity of the rumor. The experimental results of the RDNN Classifier demonstrate an accuracy of 93.24% and 95.41% in identifying rumor tweets in real-time events.

Development of Hydrological Variables Forecast Technology Using Machine Learning based Long Short-Term Memory Network (기계학습 기반의 Long Short-Term Memory 네트워크를 활용한 수문인자 예측기술 개발)

  • Kim, Tae-Jeong;Jung, Min-Kyu;Hwang, Kyu-Nam;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.340-340
    • /
    • 2019
  • 지구온난화로 유발되는 기후변동성이 증가함에 따라서 정확한 수문인자의 예측은 전 세계적으로 주요 관심사항이 되고 있다. 최근에는 고성능 컴퓨터 자원의 증가로 수문기상학 연구에서 동일한 학습량에 비하여 정확도의 향상이 뚜렷한 기계학습 구조를 활용하여 위성영상 기반의 대기예측, 태풍위치 추적 및 강수량 예측 등의 연구가 활발하게 진행되고 있다. 본 연구에는 기계학습 중 시계열 분석에 널리 활용되고 있는 순환신경망(Recurrent Neural Network, RNN) 기법의 대표적인 LSTM(Long Short-Term Memory) 네트워크를 이용하여 수문인자를 예측하였다. LSTM 네트워크는 가중치 및 메모리 요소에 대한 추가정보를 셀 상태에 저장하고 시계열의 길이 조정하여 모형의 탄력적 활용이 가능하다. LSTM 네트워크를 이용한 다양한 수문인자 예측결과 RMSE의 개선을 확인하였다. 따라서 본 연구를 통하여 개발된 기계학습을 통한 수문인자 예측기술은 권역별 수계별 홍수 및 가뭄대응 계획을 능동적으로 수립하는데 활용될 것으로 판단된다. 향후 연구에서는 LSTM의 입력영역을 Bayesian 추론기법을 활용하여 구성함으로 학습과정의 불확실성을 정량적으로 제어하고자 한다.

  • PDF

Detection The Behavior of Smartphone Users using Time-division Feature Fusion Convolutional Neural Network (시분할 특징 융합 합성곱 신경망을 이용한 스마트폰 사용자의 행동 검출)

  • Shin, Hyun-Jun;Kwak, Nae-Jung;Song, Teuk-Seob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1224-1230
    • /
    • 2020
  • Since the spread of smart phones, interest in wearable devices has increased and diversified, and is closely related to the lives of users, and has been used as a method for providing personalized services. In this paper, we propose a method to detect the user's behavior by applying information from a 3-axis acceleration sensor and a 3-axis gyro sensor embedded in a smartphone to a convolutional neural network. Human behavior differs according to the size and range of motion, starting and ending time, including the duration of the signal data constituting the motion. Therefore, there is a performance problem for accuracy when applied to a convolutional neural network as it is. Therefore, we proposed a Time-Division Feature Fusion Convolutional Neural Network (TDFFCNN) that learns the characteristics of the sensor data segmented over time. The proposed method outperformed other classifiers such as SVM, IBk, convolutional neural network, and long-term memory circulatory neural network.

Forecasting Long-Term Steamflow from a Small Waterhed Using Artificial Neural Network (인공신경망 이론을 이용한 소유역에서의 장기 유출 해석)

  • 강문성;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.69-77
    • /
    • 2001
  • An artificial neural network model was developed to analyze and forecast daily steamflow flow a small watershed. Error Back propagation neural networks (EBPN) of daily rainfall and runoff data were found to have a high performance in simulating stremflow. The model adopts a gradient descent method where the momentum and adaptive learning rate concepts were employed to minimize local minima value problems and speed up the convergence of EBP method. The number of hidden nodes was optimized using Bayesian information criterion. The resulting optimal EBPN model for forecasting daily streamflow consists of three rainfall and four runoff data (Model34), and the best number of the hidden nodes were found to be 13. The proposed model simulates the daily streamflow satisfactorily by comparison compared to the observed data at the HS#3 watershed of the Baran watershed project, which is 391.8 ha and has relatively steep topography and complex land use.

  • PDF

Long Term Streamflow Forecasting in Small Watershed using Artificial Neural Network (신경망이론을 이용한 소유역에서의 장기 유출 해석(수공))

  • 강문성;박승우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.384-389
    • /
    • 2000
  • A artificial neural network model was developed to analyze and forecast the flow fluctuation at small streams in the Balan watershed. Backpropagation neural networks were found to perform very well in forecasting daily streamflows. In order to deal with slow convergence and an appropriate structure, two algorithms were proposed for speeding up the convergence of the backpropagation method, and the Bayesian Information Criterion(BIC) was proposed for obtaining the optimal number of hidden nodes. From simulations using daily flows at the HS#3 watershed of the Balan Watershed Project, which is 412,5 ㏊ in size and relatively steep in landscape, it was found that those algorithms perform satisfactorily.

  • PDF

Long-term Prediction of Groundwater Level in Jeju Island Using Artificial Neural Network Model (인공신경망 모형을 이용한 제주 지하수위의 장기예측)

  • Chung, Il-Moon;Lee, Jeongwoo;Chang, Sun Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.981-987
    • /
    • 2017
  • Jeju Island is a volcanic island which has a large permeability. Groundwater is a major water resources and its proper management is essential. Especially, there is a multilevel restriction due to the groundwater level decline during a drought period to protect sea water intrusion. Preliminary countermeasure using long-term groundwater level prediction is necessary to use agricultural groundwater properly. For this purpose, the monthly groundwater level prediction technique by Artificial Neural Network model was developed and applied to the representative monitoring wells. The monthly prediction model showed excellent results for training and test periods. The continuous groundwater level prediction model also developed, which used the monthly forecasted values adaptively as input data. The characteristics of groundwater declines were analyzed under extreme cases without precipitation for several months.

Predicting the number of disease occurrence using recurrent neural network (순환신경망을 이용한 질병발생건수 예측)

  • Lee, Seunghyeon;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.5
    • /
    • pp.627-637
    • /
    • 2020
  • In this paper, the 1.24 million elderly patient medical data (HIRA-APS-2014-0053) provided by the Health Insurance Review and Assessment Service and weather data are analyzed with generalized estimating equation (GEE) model and long short term memory (LSTM) based recurrent neural network (RNN) model to predict the number of disease occurrence. To this end, we estimate the patient's residence as the area of the served medical institution, and the local weather data and medical data were merged. The status of disease occurrence is divided into three categories(occurrence of disease of interest, occurrence of other disease, no occurrence) during a week. The probabilities of categories are estimated by the GEE model and the RNN model. The number of cases of categories are predicted by adding the probabilities of categories. The comparison result shows that predictions of RNN model are more accurate than that of GEE model.

A deep learning method for the automatic modulation recognition of received radio signals (수신된 전파신호의 자동 변조 인식을 위한 딥러닝 방법론)

  • Kim, Hanjin;Kim, Hyeockjin;Je, Junho;Kim, Kyungsup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1275-1281
    • /
    • 2019
  • The automatic modulation recognition of a radio signal is a major task of an intelligent receiver, with various civilian and military applications. In this paper, we propose a method to recognize the modulation of radio signals in wireless communication based on the deep neural network. We classify the modulation pattern of radio signal by using the LSTM model, which can catch the long-term pattern for the sequential data as the input data of the deep neural network. The amplitude and phase of the modulated signal, the in-phase carrier, and the quadrature-phase carrier are used as input data in the LSTM model. In order to verify the performance of the proposed learning method, we use a large dataset for training and test, including the ten types of modulation signal under various signal-to-noise ratios.

A Study on Trend Using Time Series Data (시계열 데이터 활용에 관한 동향 연구)

  • Shin-Hyeong Choi
    • Advanced Industrial SCIence
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2024
  • History, which began with the emergence of mankind, has a means of recording. Today, we can check the past through data. Generated data may only be generated and stored at a certain moment, but it is not only continuously generated over a certain time interval from the past to the present, but also occurs in the future, so making predictions using it is an important task. In order to find out trends in the use of time series data among numerous data, this paper analyzes the concept of time series data, analyzes Recurrent Neural Network and Long-Short Term Memory, which are mainly used for time series data analysis in the machine learning field, and analyzes the use of these models. Through case studies, it was confirmed that it is being used in various fields such as medical diagnosis, stock price analysis, and climate prediction, and is showing high predictive results. Based on this, we will explore ways to utilize it in the future.

Performance of Exercise Posture Correction System Based on Deep Learning (딥러닝 기반 운동 자세 교정 시스템의 성능)

  • Hwang, Byungsun;Kim, Jeongho;Lee, Ye-Ram;Kyeong, Chanuk;Seon, Joonho;Sun, Young-Ghyu;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.177-183
    • /
    • 2022
  • Recently, interesting of home training is getting bigger due to COVID-19. Accordingly, research on applying HAR(human activity recognition) technology to home training has been conducted. However, existing paper of HAR proposed static activity instead of dynamic activity. In this paper, the deep learning model where dynamic exercise posture can be analyzed and the accuracy of the user's exercise posture can be shown is proposed. Fitness images of AI-hub are analyzed by blaze pose. The experiment is compared with three types of deep learning model: RNN(recurrent neural network), LSTM(long short-term memory), CNN(convolution neural network). In simulation results, it was shown that the f1-score of RNN, LSTM and CNN is 0.49, 0.87 and 0.98, respectively. It was confirmed that CNN is more suitable for human activity recognition than other models from simulation results. More exercise postures can be analyzed using a variety learning data.