International Journal of Computer Science & Network Security
/
제23권3호
/
pp.177-186
/
2023
Hyperspectral imaging technology is one of the most efficient and fast-growing technologies in recent years. Hyperspectral image (HSI) comprises contiguous spectral bands for every pixel that is used to detect the object with significant accuracy and details. HSI contains high dimensionality of spectral information which is not easy to classify every pixel. To confront the problem, we propose a novel RGB channel Assimilation for classification methods. The color features are extracted by using chromaticity computation. Additionally, this work discusses the classification of hyperspectral image based on Domain Transform Interpolated Convolution Filter (DTICF) and 3D-CNN with Bi-directional-Long Short Term Memory (Bi-LSTM). There are three steps for the proposed techniques: First, HSI data is converted to RGB images with spatial features. Before using the DTICF, the RGB images of HSI and patch of the input image from raw HSI are integrated. Afterward, the pair features of spectral and spatial are excerpted using DTICF from integrated HSI. Those obtained spatial and spectral features are finally given into the designed 3D-CNN with Bi-LSTM framework. In the second step, the excerpted color features are classified by 2D-CNN. The probabilistic classification map of 3D-CNN-Bi-LSTM, and 2D-CNN are fused. In the last step, additionally, Markov Random Field (MRF) is utilized for improving the fused probabilistic classification map efficiently. Based on the experimental results, two different hyperspectral images prove that novel RGB channel assimilation of DTICF-3D-CNN-Bi-LSTM approach is more important and provides good classification results compared to other classification approaches.
Speech emotion recognition(SER) is one of the interesting topics in the machine learning field. By developing SER, we can get numerous benefits. By using a convolutional neural network and Long Short Term Memory (LSTM ) method as a part of Artificial intelligence, the SER system can be built.
Machine learning (ML) data-driven meta-model is proposed as a surrogate model to reduce the excessive computational cost of the physics-based model and facilitate the real-time prediction of a nuclear power plant's transient response. To forecast the transient response three machine learning (ML) meta-models based on recurrent neural networks (RNNs); specifically, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and a sequence combination of Convolutional Neural Network (CNN) and LSTM are developed. The chosen accident scenario is a control element assembly withdrawal at power concurrent with the Loss Of Offsite Power (LOOP). The transient response was obtained using the best estimate thermal hydraulics code, MARS-KS, and cross-validated against the Design and control document (DCD). DAKOTA software is loosely coupled with MARS-KS code via a python interface to perform the Best Estimate Plus Uncertainty Quantification (BEPU) analysis and generate a time series database of the system response to train, test and validate the ML meta-models. Key uncertain parameters identified as required by the CASU methodology were propagated using the non-parametric Monte-Carlo (MC) random propagation and Latin Hypercube Sampling technique until a statistically significant database (181 samples) as required by Wilk's fifth order is achieved with 95% probability and 95% confidence level. The three ML RNN models were built and optimized with the help of the Talos tool and demonstrated excellent performance in forecasting the most probable NPP transient response. This research was guided by the Systems Engineering (SE) approach for the systematic and efficient planning and execution of the research.
머신 러닝의 심층 개발로 딥 러닝 방법은 특히 CNN(Convolution Neural Network)에서 큰 진전을 이루었다. 전통적인 텍스트 정서 분류 방법과 비교할 때 딥 러닝 기반 CNN은 복잡한 다중 레이블 및 다중 분류 실험의 텍스트 분류 및 처리에서 크게 발전하였다. 그러나 텍스트 정서 분류를 위한 신경망에도 문제가 있다. 이 논문에서는 LSTM (Long-Short Term Memory network) 및 CNN 딥 러닝 방법에 기반 한 융합 모델을 제안하고, 다중 카테고리 뉴스 데이터 세트에 적용하여 좋은 결과를 얻었다. 실험에 따르면 딥 러닝을 기반으로 한 융합 모델이 텍스트 정서 분류의 예측성과 정확성을 크게 개선하였다. 본 논문에서 제안한 방법은 모델을 최적화하고 그 모델의 성능을 개선하는 중요한 방법이 될 것이다.
사람이 어떤 문장을 보고 그 문장에 대해 이해하는 것은 문장 안에서 주요한 단어를 이미지로 연상시켜 그 문장에 대해 이해한다. 이러한 연상과정을 컴퓨터가 할 수 있도록 하는 것을 text-to-image라고 한다. 기존 딥 러닝 기반 text-to-image 모델은 Convolutional Neural Network(CNN)-Long Short Term Memory(LSTM), bi-directional LSTM을 사용하여 텍스트의 특징을 추출하고, GAN에 입력으로 하여 이미지를 생성한다. 기존 text-to-image 모델은 텍스트 특징 추출에서 기본적인 임베딩을 사용하였으며, 여러 모듈을 사용하여 이미지를 생성하므로 학습 시간이 오래 걸린다. 따라서 본 연구에서는 자연어 처리분야에서 성능 향상을 보인 어텐션 메커니즘(Attention Mechanism)을 문장 임베딩에 사용하여 특징을 추출하고, 추출된 특징을 GAN에 입력하여 이미지를 생성하는 방법을 제안한다. 실험 결과 기존 연구에서 사용되는 모델보다 inception score가 높았으며 육안으로 판단하였을 때 입력된 문장에서 특징을 잘 표현하는 이미지를 생성하였다. 또한, 긴 문장이 입력되었을 때에도 문장을 잘 표현하는 이미지를 생성하였다.
주식 투자는 가장 널리 알려진 재테크 방법들 중 하나지만 실제 투자를 통해 수익을 얻기는 쉽지 않기 때문에 과거부터 효과적이고 안정적인 투자 수익을 얻기 위한 다양한 투자 전략들이 고안되고 시도되어 왔다. 그중 변동성 돌파 전략(Volatility Breakout)은 일일 단위로 일정 수준 이상의 범위를 뛰어넘는 강한 상승세를 돌파 신호로 파악하여 상승하는 추세를 따라가며 일 단위로 빠르게 수익을 실현하는 전략으로 널리 쓰이고 있는 단기 투자 전략들 중 하나이다. 그러나 주식 종목마다 가격의 추이나 변동성의 정도가 다르며 동일한 종목이라도 시기에 따라 주가의 흐름이 일정하지 않아 주가를 예측하고 정확한 매매 시점을 찾아내는 것은 매우 어려운 문제이다. 본 논문에서는 단순히 종가 또는 장기간에 걸친 수익률을 예측하는 기존 연구 방법들과는 달리 단기간에 수익을 실현할 수 있는 주식과 같은 시계열 데이터 분석에 적합한 양방향 장단기 메모리 심층 신경망을 이용하여 변동성 돌파 전략 기반 매매 시의 수익률을 예측하여 주식을 매매하여 방법을 제안한다. 이렇게 학습된 모델로 테스트 데이터에 대하여 실제 매매를 가정하여 실험한 결과 기존의 장단기 메모리 심층 신경망을 이용한 종가 예측 모델보다 수익률과 안정성을 모두 상회하는 결과를 확인할 수 있다.
In this paper, we analyze the infrared feature for the small coast targets according to the surrounding environment for autonomous flight device equipped with an infrared imaging sensor and we propose Cross Duality of Neural Network (CR-DuNN) method which can classify the target and clutter in coastal environment. In coastal environment, there are various property according to diverse change of air temperature, sea temperature, deferent seasons. And small coast target have various infrared feature according to diverse change of environment. In this various environment, it is very important thing that we analyze and classify targets from the clutters to improve target detection accuracy. Thus, we propose infrared feature learning algorithm through LSTM neural network and also propose CR-DuNN algorithm that integrate LSTM prediction network with Du-CNN classification network to classify targets from the clutters.
본 논문에서는 건강보험심사평가원에서 제공한 약 120만명의 2014년 고령환자의료자료(HIRA-APS-2014-0053)과 기상자료를 일반화추정방정식(generalized estimating equation; GEE) 모형과 long short term memory (LSTM) 기반 순환신경망(recurrent neural network; RNN) 모형으로 분석하여 기상 조건에 따른 주요 주상병의 발생 빈도를 예측한다. 이를 위해 환자가 의료 서비스를 받은 기관의 지역을 이용하여 환자의 거주지를 추정하고 해당 지역의 주별 기상 관측소 자료와 의료자료를 병합하였다. 질병 발생 상태를 세 개의 범주(질병에 걸리지 않음, 관심 주상병 발생, 다른 질병 방생)로 나누었으며 각 범주에 속할 확률을 GEE 모형과 RNN 모형으로 추정하였다. 각 범주별 발생 건수는 해당 범주의 속할 추정확률의 합으로 계산하였으며 비교분석결과 RNN을 이용한 예측이 GEE를 이용한 예측보다 정확도가 높은 것으로 나타났다.
인류의 출현과 함께 시작된 역사에는 기록이라는 수단이 있기에 현재에 사는 우리는 데이터를 통해 과거를 확인할 수 있다. 생성되는 데이터는 일정 순간에만 발생하여 저장될 수도 있지만, 과거로부터 현재까지 일정 시간 간격 동안 계속해서 생성될 뿐만 아니라 다가올 미래에도 발생함으로써 이를 활용하여 예측하는 것 또한 중요한 작업이다. 본 논문은 수많은 데이터 중에서 시계열 데이터의 활용 동향을 알아보기 위해서 시계열 데이터의 개념에서부터 머신러닝 분야에서 시계열 데이터 분석에 주로 사용되는 Recurrent Neural Network와 Long-Short Term Memory에 대해 분석하고, 이런 모델들을 활용한 사례의 조사를 통해 의료 진단, 주식 시세 분석, 기후 예측 등 다양한 분야에 활용되어 높은 예측 결과를 보이고 있음을 확인하였고, 이를 바탕으로 향후 활용방안에 대하여 모색해본다.
본 논문에서는 소형어선의 운동 응답을 예측하기 위해 딥러닝 모델을 구축하였다. 크기가 다른 두 소형어선을 대상으로 유체동역학 성능을 평가하여 데이터세트를 확보하였다. 딥러닝 모델은 순환 신경망 기법의 하나인 장단기 메모리 기법(LSTM, Long Short-Term Memory)을 사용하였다. 딥러닝 모델의 입력 데이터는 6 자유도 운동 및 파고의 시계열 데이터를 사용하였으며, 출력 라벨로는 6 자유도 운동의 시계열 데이터로 선정하였다. 최적 LSTM 모델 구축을 위해 hyperparameter 및 입력창 길이의 영향을 평가하였다. 구축된 LSTM 모델을 통해 입사파 방향에 따른 시계열 운동 응답을 예측하였다. 예측된 시계열 운동 응답은 해석 결과와 전반적으로 잘 일치함을 확인할 수 있었다. 시계열의 길이가 길어짐에 따라서 예측값과 해석 결과의 차이가 발생하는데, 이는 장기 데이터에 따른 훈련 영향도가 감소 됨에 따라 나타난 것으로 확인할 수 있다. 전체 예측 데이터의 오차는 약 85% 이상의 데이터가 10% 이내의 오차를 보였으며, 소형어선의 시계열 운동 응답을 잘 예측함을 확인하였다. 구축된 LSTM 모델은 소형어선의 모니터링 및 경보 시스템에 활용될 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.