• 제목/요약/키워드: long short-term memory neural network

검색결과 265건 처리시간 0.019초

양방향 장단기 메모리 신경망을 이용한 욕설 검출 (Abusive Detection Using Bidirectional Long Short-Term Memory Networks)

  • 나인섭;이신우;이재학;고진광
    • 한국빅데이터학회지
    • /
    • 제4권2호
    • /
    • pp.35-45
    • /
    • 2019
  • 욕설과 비속어를 포함한 악성 댓글에 대한 피해는 최근 언론에 나오는 연애인의 자살뿐만 아니라 사회 전반에서 다양한 형태로 증가하고 있다. 이 논문에서는 양방향 장단기 메모리 신경망 모델을 이용하여 욕설을 검출하는 기법을 제시하였다. 웹 크룰러를 통해 웹상의 댓글을 수집하고, 영어나 특수문자 등의 사용하지 않은 글에 대해 불용어 처리를 하였다. 불용어 처리된 댓글에 대해 문장의 전·후 관계를 고려한 양방향 장단기 메모리 신경망 모델을 적용하여 욕설 여부를 판단하고 검출하였다. 양방향 장단기 메모리 신경망을 사용하기 위해 검출된 댓글에 대해 형태소 분석과 벡터화 과정을 거쳤으며 각 단어들에 욕설 해당 여부를 라벨링하여 진행하였다. 실험 결과 정제하고 수집된 총 9,288개의 댓글에 대해 88.79%의 성능을 나타내었다.

  • PDF

Long Short-Term Memory를 이용한 부산항 조위 예측 (Tidal Level Prediction of Busan Port using Long Short-Term Memory)

  • 김해림;전용호;박재형;윤한삼
    • 해양환경안전학회지
    • /
    • 제28권4호
    • /
    • pp.469-476
    • /
    • 2022
  • 본 연구는 조위 관측자료를 이용하여 부산항에서의 장기 조위 자료를 생성하는 Long Short-Term Memory (LSTM)으로 구현된 순환신경망 모델을 개발하였다. 국립해양조사원의 부산 신항과 통영에서 관측된 조위 자료를 모델 입력 자료로 사용하여 부산항의 조위를 예측하였다. 모델에 대하여 2019년 1월 한 달의 학습을 수행하였으며, 이후 2019년 2월에서 2020년 1월까지 1년에 대하여 정확도를 계산하였다. 구축된 모델은 부산 신항과 통영의 조위 시계열을 함께 입력한 경우에 상관계수 0.997 및 평균 제곱근 오차 2.69 m로 가장 성능이 높았다. 본 연구 결과를 바탕으로 딥러닝 순환신경망 모델을 이용하여 임의 항만의 장기 조위 자료 예측이 가능함을 알 수 있었다.

Comparative Analysis of PM10 Prediction Performance between Neural Network Models

  • Jung, Yong-Jin;Oh, Chang-Heon
    • Journal of information and communication convergence engineering
    • /
    • 제19권4호
    • /
    • pp.241-247
    • /
    • 2021
  • Particulate matter has emerged as a serious global problem, necessitating highly reliable information on the matter. Therefore, various algorithms have been used in studies to predict particulate matter. In this study, we compared the prediction performance of neural network models that have been actively studied for particulate matter prediction. Among the neural network algorithms, a deep neural network (DNN), a recurrent neural network, and long short-term memory were used to design the optimal prediction model using a hyper-parameter search. In the comparative analysis of the prediction performance of each model, the DNN model showed a lower root mean square error (RMSE) than the other algorithms in the performance comparison using the RMSE and the level of accuracy as metrics for evaluation. The stability of the recurrent neural network was slightly lower than that of the other algorithms, although the accuracy was higher.

Long Short-Term Memory를 활용한 건화물운임지수 예측 (Prediction of Baltic Dry Index by Applications of Long Short-Term Memory)

  • 한민수;유성진
    • 품질경영학회지
    • /
    • 제47권3호
    • /
    • pp.497-508
    • /
    • 2019
  • Purpose: The purpose of this study is to overcome limitations of conventional studies that to predict Baltic Dry Index (BDI). The study proposed applications of Artificial Neural Network (ANN) named Long Short-Term Memory (LSTM) to predict BDI. Methods: The BDI time-series prediction was carried out through eight variables related to the dry bulk market. The prediction was conducted in two steps. First, identifying the goodness of fitness for the BDI time-series of specific ANN models and determining the network structures to be used in the next step. While using ANN's generalization capability, the structures determined in the previous steps were used in the empirical prediction step, and the sliding-window method was applied to make a daily (one-day ahead) prediction. Results: At the empirical prediction step, it was possible to predict variable y(BDI time series) at point of time t by 8 variables (related to the dry bulk market) of x at point of time (t-1). LSTM, known to be good at learning over a long period of time, showed the best performance with higher predictive accuracy compared to Multi-Layer Perceptron (MLP) and Recurrent Neural Network (RNN). Conclusion: Applying this study to real business would require long-term predictions by applying more detailed forecasting techniques. I hope that the research can provide a point of reference in the dry bulk market, and furthermore in the decision-making and investment in the future of the shipping business as a whole.

The roles of differencing and dimension reduction in machine learning forecasting of employment level using the FRED big data

  • Choi, Ji-Eun;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • 제26권5호
    • /
    • pp.497-506
    • /
    • 2019
  • Forecasting the U.S. employment level is made using machine learning methods of the artificial neural network: deep neural network, long short term memory (LSTM), gated recurrent unit (GRU). We consider the big data of the federal reserve economic data among which 105 important macroeconomic variables chosen by McCracken and Ng (Journal of Business and Economic Statistics, 34, 574-589, 2016) are considered as predictors. We investigate the influence of the two statistical issues of the dimension reduction and time series differencing on the machine learning forecast. An out-of-sample forecast comparison shows that (LSTM, GRU) with differencing performs better than the autoregressive model and the dimension reduction improves long-term forecasts and some short-term forecasts.

Comparison of Fall Detection Systems Based on YOLOPose and Long Short-Term Memory

  • Seung Su Jeong;Nam Ho Kim;Yun Seop Yu
    • Journal of information and communication convergence engineering
    • /
    • 제22권2호
    • /
    • pp.139-144
    • /
    • 2024
  • In this study, four types of fall detection systems - designed with YOLOPose, principal component analysis (PCA), convolutional neural network (CNN), and long short-term memory (LSTM) architectures - were developed and compared in the detection of everyday falls. The experimental dataset encompassed seven types of activities: walking, lying, jumping, jumping in activities of daily living, falling backward, falling forward, and falling sideways. Keypoints extracted from YOLOPose were entered into the following architectures: RAW-LSTM, PCA-LSTM, RAW-PCA-LSTM, and PCA-CNN-LSTM. For the PCA architectures, the reduced input size stemming from a dimensionality reduction enhanced the operational efficiency in terms of computational time and memory at the cost of decreased accuracy. In contrast, the addition of a CNN resulted in higher complexity and lower accuracy. The RAW-LSTM architecture, which did not include either PCA or CNN, had the least number of parameters, which resulted in the best computational time and memory while also achieving the highest accuracy.

Optimizing Artificial Neural Network-Based Models to Predict Rice Blast Epidemics in Korea

  • Lee, Kyung-Tae;Han, Juhyeong;Kim, Kwang-Hyung
    • The Plant Pathology Journal
    • /
    • 제38권4호
    • /
    • pp.395-402
    • /
    • 2022
  • To predict rice blast, many machine learning methods have been proposed. As the quality and quantity of input data are essential for machine learning techniques, this study develops three artificial neural network (ANN)-based rice blast prediction models by combining two ANN models, the feed-forward neural network (FFNN) and long short-term memory, with diverse input datasets, and compares their performance. The Blast_Weathe long short-term memory r_FFNN model had the highest recall score (66.3%) for rice blast prediction. This model requires two types of input data: blast occurrence data for the last 3 years and weather data (daily maximum temperature, relative humidity, and precipitation) between January and July of the prediction year. This study showed that the performance of an ANN-based disease prediction model was improved by applying suitable machine learning techniques together with the optimization of hyperparameter tuning involving input data. Moreover, we highlight the importance of the systematic collection of long-term disease data.

An accident diagnosis algorithm using long short-term memory

  • Yang, Jaemin;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.582-588
    • /
    • 2018
  • Accident diagnosis is one of the complex tasks for nuclear power plant (NPP) operators. In abnormal or emergency situations, the diagnostic activity of the NPP states is burdensome though necessary. Numerous computer-based methods and operator support systems have been suggested to address this problem. Among them, the recurrent neural network (RNN) has performed well at analyzing time series data. This study proposes an algorithm for accident diagnosis using long short-term memory (LSTM), which is a kind of RNN, which improves the limitation for time reflection. The algorithm consists of preprocessing, the LSTM network, and postprocessing. In the LSTM-based algorithm, preprocessed input variables are calculated to output the accident diagnosis results. The outputs are also postprocessed using softmax to determine the ranking of accident diagnosis results with probabilities. This algorithm was trained using a compact nuclear simulator for several accidents: a loss of coolant accident, a steam generator tube rupture, and a main steam line break. The trained algorithm was also tested to demonstrate the feasibility of diagnosing NPP accidents.

딥러닝 기반의 다범주 감성분석 모델 개발 (Development of Deep Learning Models for Multi-class Sentiment Analysis)

  • 알렉스 샤이코니;서상현;권영식
    • 한국IT서비스학회지
    • /
    • 제16권4호
    • /
    • pp.149-160
    • /
    • 2017
  • Sentiment analysis is the process of determining whether a piece of document, text or conversation is positive, negative, neural or other emotion. Sentiment analysis has been applied for several real-world applications, such as chatbot. In the last five years, the practical use of the chatbot has been prevailing in many field of industry. In the chatbot applications, to recognize the user emotion, sentiment analysis must be performed in advance in order to understand the intent of speakers. The specific emotion is more than describing positive or negative sentences. In light of this context, we propose deep learning models for conducting multi-class sentiment analysis for identifying speaker's emotion which is categorized to be joy, fear, guilt, sad, shame, disgust, and anger. Thus, we develop convolutional neural network (CNN), long short term memory (LSTM), and multi-layer neural network models, as deep neural networks models, for detecting emotion in a sentence. In addition, word embedding process was also applied in our research. In our experiments, we have found that long short term memory (LSTM) model performs best compared to convolutional neural networks and multi-layer neural networks. Moreover, we also show the practical applicability of the deep learning models to the sentiment analysis for chatbot.

Long Short Term Memory based Political Polarity Analysis in Cyber Public Sphere

  • Kang, Hyeon;Kang, Dae-Ki
    • International Journal of Advanced Culture Technology
    • /
    • 제5권4호
    • /
    • pp.57-62
    • /
    • 2017
  • In this paper, we applied long short term memory(LSTM) for classifying political polarity in cyber public sphere. The data collected from the cyber public sphere is transformed into word corpus data through word embedding. Based on this word corpus data, we train recurrent neural network (RNN) which is connected by LSTM's. Softmax function is applied at the output of the RNN. We conducted our proposed system to obtain experimental results, and we will enhance our proposed system by refining LSTM in our system.