• Title/Summary/Keyword: long short-term memory(LSTM)

검색결과 523건 처리시간 0.036초

해양기상부표의 센서 데이터 품질 향상을 위한 프레임워크 개발 (Development of a Framework for Improvement of Sensor Data Quality from Weather Buoys)

  • 이주용;이재영;이지우;신상문;장준혁;한준희
    • 산업경영시스템학회지
    • /
    • 제46권3호
    • /
    • pp.186-197
    • /
    • 2023
  • In this study, we focus on the improvement of data quality transmitted from a weather buoy that guides a route of ships. The buoy has an Internet-of-Thing (IoT) including sensors to collect meteorological data and the buoy's status, and it also has a wireless communication device to send them to the central database in a ground control center and ships nearby. The time interval of data collected by the sensor is irregular, and fault data is often detected. Therefore, this study provides a framework to improve data quality using machine learning models. The normal data pattern is trained by machine learning models, and the trained models detect the fault data from the collected data set of the sensor and adjust them. For determining fault data, interquartile range (IQR) removes the value outside the outlier, and an NGBoost algorithm removes the data above the upper bound and below the lower bound. The removed data is interpolated using NGBoost or long-short term memory (LSTM) algorithm. The performance of the suggested process is evaluated by actual weather buoy data from Korea to improve the quality of 'AIR_TEMPERATURE' data by using other data from the same buoy. The performance of our proposed framework has been validated through computational experiments based on real-world data, confirming its suitability for practical applications in real-world scenarios.

시계열 예측 모델을 활용한 암호화폐 투자 전략 개발 (Developing Cryptocurrency Trading Strategies with Time Series Forecasting Model)

  • 김현선;안재준
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.152-159
    • /
    • 2023
  • This study endeavors to enrich investment prospects in cryptocurrency by establishing a rationale for investment decisions. The primary objective involves evaluating the predictability of four prominent cryptocurrencies - Bitcoin, Ethereum, Litecoin, and EOS - and scrutinizing the efficacy of trading strategies developed based on the prediction model. To identify the most effective prediction model for each cryptocurrency annually, we employed three methodologies - AutoRegressive Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), and Prophet - representing traditional statistics and artificial intelligence. These methods were applied across diverse periods and time intervals. The result suggested that Prophet trained on the previous 28 days' price history at 15-minute intervals generally yielded the highest performance. The results were validated through a random selection of 100 days (20 target dates per year) spanning from January 1st, 2018, to December 31st, 2022. The trading strategies were formulated based on the optimal-performing prediction model, grounded in the simple principle of assigning greater weight to more predictable assets. When the forecasting model indicates an upward trend, it is recommended to acquire the cryptocurrency with the investment amount determined by its performance. Experimental results consistently demonstrated that the proposed trading strategy yields higher returns compared to an equal portfolio employing a buy-and-hold strategy. The cryptocurrency trading model introduced in this paper carries two significant implications. Firstly, it facilitates the evolution of cryptocurrencies from speculative assets to investment instruments. Secondly, it plays a crucial role in advancing deep learning-based investment strategies by providing sound evidence for portfolio allocation. This addresses the black box issue, a notable weakness in deep learning, offering increased transparency to the model.

A Method for Generating Malware Countermeasure Samples Based on Pixel Attention Mechanism

  • Xiangyu Ma;Yuntao Zhao;Yongxin Feng;Yutao Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.456-477
    • /
    • 2024
  • With information technology's rapid development, the Internet faces serious security problems. Studies have shown that malware has become a primary means of attacking the Internet. Therefore, adversarial samples have become a vital breakthrough point for studying malware. By studying adversarial samples, we can gain insights into the behavior and characteristics of malware, evaluate the performance of existing detectors in the face of deceptive samples, and help to discover vulnerabilities and improve detection methods for better performance. However, existing adversarial sample generation methods still need help regarding escape effectiveness and mobility. For instance, researchers have attempted to incorporate perturbation methods like Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), and others into adversarial samples to obfuscate detectors. However, these methods are only effective in specific environments and yield limited evasion effectiveness. To solve the above problems, this paper proposes a malware adversarial sample generation method (PixGAN) based on the pixel attention mechanism, which aims to improve adversarial samples' escape effect and mobility. The method transforms malware into grey-scale images and introduces the pixel attention mechanism in the Deep Convolution Generative Adversarial Networks (DCGAN) model to weigh the critical pixels in the grey-scale map, which improves the modeling ability of the generator and discriminator, thus enhancing the escape effect and mobility of the adversarial samples. The escape rate (ASR) is used as an evaluation index of the quality of the adversarial samples. The experimental results show that the adversarial samples generated by PixGAN achieve escape rates of 97%, 94%, 35%, 39%, and 43% on the Random Forest (RF), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Convolutional Neural Network and Recurrent Neural Network (CNN_RNN), and Convolutional Neural Network and Long Short Term Memory (CNN_LSTM) algorithmic detectors, respectively.

Speech Emotion Recognition in People at High Risk of Dementia

  • Dongseon Kim;Bongwon Yi;Yugwon Won
    • 대한치매학회지
    • /
    • 제23권3호
    • /
    • pp.146-160
    • /
    • 2024
  • Background and Purpose: The emotions of people at various stages of dementia need to be effectively utilized for prevention, early intervention, and care planning. With technology available for understanding and addressing the emotional needs of people, this study aims to develop speech emotion recognition (SER) technology to classify emotions for people at high risk of dementia. Methods: Speech samples from people at high risk of dementia were categorized into distinct emotions via human auditory assessment, the outcomes of which were annotated for guided deep-learning method. The architecture incorporated convolutional neural network, long short-term memory, attention layers, and Wav2Vec2, a novel feature extractor to develop automated speech-emotion recognition. Results: Twenty-seven kinds of Emotions were found in the speech of the participants. These emotions were grouped into 6 detailed emotions: happiness, interest, sadness, frustration, anger, and neutrality, and further into 3 basic emotions: positive, negative, and neutral. To improve algorithmic performance, multiple learning approaches were applied using different data sources-voice and text-and varying the number of emotions. Ultimately, a 2-stage algorithm-initial text-based classification followed by voice-based analysis-achieved the highest accuracy, reaching 70%. Conclusions: The diverse emotions identified in this study were attributed to the characteristics of the participants and the method of data collection. The speech of people at high risk of dementia to companion robots also explains the relatively low performance of the SER algorithm. Accordingly, this study suggests the systematic and comprehensive construction of a dataset from people with dementia.

이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가 (Feasibility of Deep Learning Algorithms for Binary Classification Problems)

  • 김기태;이보미;김종우
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.95-108
    • /
    • 2017
  • 최근 알파고의 등장으로 딥러닝 기술에 대한 관심이 고조되고 있다. 딥러닝은 향후 미래의 핵심 기술이 되어 일상생활의 많은 부분을 개선할 것이라는 기대를 받고 있지만, 주요한 성과들이 이미지 인식과 자연어처리 등에 국한되어 있고 전통적인 비즈니스 애널리틱스 문제에의 활용은 미비한 실정이다. 실제로 딥러닝 기술은 Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), Deep Boltzmann Machine (DBM) 등 알고리즘들의 선택, Dropout 기법의 활용여부, 활성 함수의 선정 등 다양한 네트워크 설계 이슈들을 가지고 있다. 따라서 비즈니스 문제에서의 딥러닝 알고리즘 활용은 아직 탐구가 필요한 영역으로 남아있으며, 특히 딥러닝을 현실에 적용했을 때 발생할 수 있는 여러 가지 문제들은 미지수이다. 이에 따라 본 연구에서는 다이렉트 마케팅 응답모델, 고객이탈분석, 대출 위험 분석 등의 주요한 분류 문제인 이진분류에 딥러닝을 적용할 수 있을 것인지 그 가능성을 실험을 통해 확인하였다. 실험에는 어느 포르투갈 은행의 텔레마케팅 응답여부에 대한 데이터 집합을 사용하였으며, 전통적인 인공신경망인 Multi-Layer Perceptron, 딥러닝 알고리즘인 CNN과 RNN을 변형한 Long Short-Term Memory, 딥러닝 모형에 많이 활용되는 Dropout 기법 등을 이진 분류 문제에 활용했을 때의 성능을 비교하였다. 실험을 수행한 결과 CNN 알고리즘은 비즈니스 데이터의 이진분류 문제에서도 MLP 모형에 비해 향상된 성능을 보였다. 또한 MLP와 CNN 모두 Dropout을 적용한 모형이 적용하지 않은 모형보다 더 좋은 분류 성능을 보여줌에 따라, Dropout을 적용한 CNN 알고리즘이 이진분류 문제에도 활용될 수 있는 가능성을 확인하였다.

단어그룹 확장 기법을 활용한 순환신경망 알고리즘 성능개선 연구 (A Study on Performance Improvement of Recurrent Neural Networks Algorithm using Word Group Expansion Technique)

  • 박대승;성열우;김정길
    • 산업융합연구
    • /
    • 제20권4호
    • /
    • pp.23-30
    • /
    • 2022
  • 최근 인공지능(AI)과 딥러닝 발전으로 대화형 인공지능 챗봇의 중요성이 부각되고 있으며 다양한 분야에서 연구가 진행되고 있다. 챗봇을 만들기 위해서 직접 개발해 사용하기도 하지만 개발의 용이성을 위해 오픈소스 플랫폼이나 상업용 플랫폼을 활용하여 개발한다. 이러한 챗봇 플랫폼은 주로 RNN (Recurrent Neural Network)과 응용 알고리즘을 사용하며, 빠른 학습속도와 모니터링 및 검증의 용이성 그리고 좋은 추론 성능의 장점을 가지고 있다. 본 논문에서는 RNN과 응용 알고리즘의 추론 성능 향상방법을 연구하였다. 제안 방법은 RNN과 응용 알고리즘 적용 시 각 문장에 대한 핵심단어의 단어그룹에 대해 확장학습을 통해 데이터에 내재된 의미를 넓히는 기법을 사용하였다. 본 연구의 결과는 순환 구조를 갖는 RNN, GRU (Gated Recurrent Unit), LSTM (Long-short Term Memory) 세 알고리즘에서 최소 0.37%에서 최대 1.25% 추론 성능향상을 달성하였다. 본 연구를 통해 얻은 연구결과는 관련 산업에서 인공지능 챗봇 도입을 가속하고 다양한 RNN 응용 알고리즘을 활용하도록 하는데 기여할 수 있다. 향후 연구에서는 다양한 활성 함수들이 인공신경망 알고리즘의 성능 향상에 미치는 영향에 관한 연구가 필요할 것이다.

댐 운영 고도화를 위한 AI 기법 적용 연구 (Research on the Application of AI Techniques to Advance Dam Operation)

  • 최현구;정석일;박진용;권이재;이준열
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.387-387
    • /
    • 2022
  • 기존 홍수기시 댐 운영은 예측 강우와 실시간 관측 강우를 이용하여 댐 운영 모형을 수행하며, 예측 결과에 따라 의사결정 및 댐 운영을 실시하게 된다. 하지만 이 과정에서 반복적인 분석이 필요하며, 댐 운영 모형 수행자의 경험에 따라 예측 결과가 달라져서 반복작업에 대한 자동화, 모형 수행자에 따라 달라지지 않는 예측 결과의 일반화가 필요한 상황이다. 이에 댐 운영 모형에 AI 기법을 적용하여, 다양한 강우 상황에 따른 자동 예측 및 모형 결과의 일반화를 구현하고자 하였다. 이를 위해 수자원 분야에 적용된 국내외 129개 연구논문에서 사용된 딥러닝 기법의 활용성을 분석하였으며, 다양한 수자원 분야 AI 적용 사례 중에서 댐 운영 예측 모형에 적용한 사례는 없었지만 유사한 분야로는 장기 저수지 운영 예측과 댐 상·하류 수위, 유량 예측이 있었다. 수자원의 시계열 자료 활용을 위해서는 Long-Short Term Memory(LSTM) 기법의 적용 활용성이 높은 것으로 분석되었다. 댐 운영 모형에서 AI 적용은 2개 분야에서 진행하였다. 기존 강우관측소의 관측 강우를 활용하여 강우의 패턴분석을 수행하는 과정과, 강우에서 댐 유입량 산정시 매개변수 최적화 분야에 적용하였다. 강우 패턴분석에서는 유사한 표본끼리 묶음을 생성하는 K-means 클러스터링 알고리즘과 시계열 데이터의 유사도 분석 방법인 Dynamic Time Warping을 결합하여 적용하였다. 강우 패턴분석을 통해서 지점별로 월별, 태풍 및 장마기간에 가장 많이 관측되었던 강우 패턴을 제시하며, 이를 모형에서 직접적으로 활용할 수 있도록 구성하였다. 강우에서 댐 유입량을 산정시 활용되는 매개변수 최적화를 위해서는 3층의 Multi-Layer LSTM 기법과 경사하강법을 적용하였다. 매개변수 최적화에 적용되는 매개변수는 중권역별 8개이며, 매개변수 최적화 과정을 통해 산정되는 결과물은 실측값과 오차가 제일 적은 유량(유입량)이 된다. 댐 운영 모형에 AI 기법을 적용한 결과 기존 반복작업에 대한 자동화는 이뤘으며, 댐 운영에 따른 상·하류 제약사항 표출 기능을 추가하여 의사결정에 소요되는 시간도 많이 줄일 수 있었다. 하지만, 매개변수 최적화 부분에서 기존 댐운영 모형에 적용되어 있는 고전적인 매개변수 추정기법보다 추정시간이 오래 소요되며, 매개변수 추정결과의 일반화가 이뤄지지 않아 이 부분에 대한 추가적인 연구가 필요하다.

  • PDF

제주도 표선유역 중산간지역의 최적 지하수위 예측을 위한 인공신경망의 활성화함수 비교분석 (Comparative analysis of activation functions of artificial neural network for prediction of optimal groundwater level in the middle mountainous area of Pyoseon watershed in Jeju Island)

  • 신문주;김진우;문덕철;이정한;강경구
    • 한국수자원학회논문집
    • /
    • 제54권spc1호
    • /
    • pp.1143-1154
    • /
    • 2021
  • 활성화함수의 선택은 인공신경망(Artificial Neural Network, ANN) 모델의 지하수위 예측성능에 큰 영향을 미친다. 특히 제주도의 중산간 지역과 같이 지하수위의 변동폭이 크고 변동양상이 복잡한 경우 적절한 지하수위 예측을 위해서는 다양한 활성화함수의 비교분석을 통한 최적의 활성화함수 선택이 반드시 필요하다. 본 연구에서는 지하수위의 변동폭이 크고 변동양상이 복잡한 제주도 표선유역 중산간지역 2개 지하수위 관측정을 대상으로 5개의 활성화함수(sigmoid, hyperbolic tangent (tanh), Rectified Linear Unit (ReLU), Leaky Rectified Linear Unit (Leaky ReLU), Exponential Linear Unit (ELU))를 ANN 모델에 적용하여 지하수위 예측결과를 비교 및 분석하고 최적 활성화함수를 도출하였다. 그리고 최근 널리 사용되고 있는 순환신경망 모델인 Long Short-Term Memory (LSTM) 모델의 결과와 비교분석하였다. 분석결과 지하수위 변동폭이 상대적으로 큰 관측정과 상대적으로 작은 관측정에 대한 지하수위 예측에 대해서는 각각 ELU와 Leaky ReLU 함수가 최적의 활성화함수로 도출되었다. 반면 sigmoid 함수는 학습기간에 대해 5개 활성화함수 중 예측성능이 가장 낮았으며 첨두 및 최저 지하수위 예측에서 적절하지 못한 결과를 도출하였다. 따라서 ANN-sigmoid 모델은 가뭄기간의 지하수위 예측을 통한 지하수자원 관리목적으로 사용할 경우 주의가 필요하다. ANN-ELU와 ANN-Leaky ReLU 모델은 LSTM 모델과 대등한 지하수위 예측성능을 보여 활용가능성이 충분히 있으며 LSTM 모델은 ANN 모델들 보다 예측성능이 높아 인공지능 모델의 예측성능 비교분석 시 참고 모델로 활용될 수 있다. 마지막으로 학습기간의 정보량에 따라 학습기간의 지하수위 예측성능이 검증 및 테스트 기간의 예측성능보다 낮을 수 있다는 것을 확인하였으며, 관측지하수위의 변동폭이 크고 변동양상이 복잡할수록 인공지능 모델별 지하수위 예측능력의 차이는 커졌다. 본 연구에서 제시한 5개의 활성화함수를 적용한 연구방법 및 비교분석 결과는 지하수위 예측뿐만 아니라 일단위 하천유출량 및 시간단위 홍수량 등 지표수 예측을 포함한 다양한 연구에 유용하게 사용될 수 있다.

데이터의 불균형성을 제거한 네트워크 침입 탐지 모델 비교 분석 (Experimental Comparison of Network Intrusion Detection Models Solving Imbalanced Data Problem)

  • 이종화;방지원;김종욱;최미정
    • KNOM Review
    • /
    • 제23권2호
    • /
    • pp.18-28
    • /
    • 2020
  • 컴퓨팅 환경의 발전에 따라 IT 기술이 의료, 산업, 통신, 문화 등의 분야에서 사람들에게 제공해주는 혜택이 늘어나 삶의 질도 향상되고 있다. 그에 따라 발전된 네트워크 환경을 노리는 다양한 악의적인 공격이 존재한다. 이러한 공격들을 사전에 탐지하기 위해 방화벽, 침입 탐지 시스템 등이 존재하지만, 나날이 진화하는 악성 공격들을 탐지하는 데에는 한계가 있다. 이를 해결하기 위해 기계 학습을 이용한 침입 탐지 연구가 활발히 진행되고 있지만, 학습 데이터셋의 불균형으로 인한 오탐 및 미탐이 발생하고 있다. 본 논문에서는 네트워크 침입 탐지에 사용되는 UNSW-NB15 데이터셋의 불균형성 문제를 해결하기 위해 랜덤 오버샘플링 방법을 사용했다. 실험을 통해 모델들의 accuracy, precision, recall, F1-score, 학습 및 예측 시간, 하드웨어 자원 소모량을 비교 분석했다. 나아가 본 연구를 기반으로 랜덤 오버샘플링 방법 이외에 불균형한 데이터 문제를 해결할 수 있는 다른 방법들과 성능이 높은 모델들을 이용하여 좀 더 효율적인 네트워크 침입 탐지 모델 연구로 발전시키고자 한다.

Adverse Effects on EEGs and Bio-Signals Coupling on Improving Machine Learning-Based Classification Performances

  • SuJin Bak
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권10호
    • /
    • pp.133-153
    • /
    • 2023
  • 본 논문에서 우리는 뇌 신호 측정 기술 중 하나인 뇌전도를 활용한 새로운 접근방식을 제안한다. 전통적으로 연구자들은 감정 상태의 분류성능을 향상시키기 위해 뇌전도 신호와 생체신호를 결합해왔다. 우리의 목표는 뇌전도와 결합된 생체신호의 상호작용 효과를 탐구하고, 뇌전도+생체신호의 조합이 뇌전도 단독사용 또는 임의로 생성된 의사 무작위 신호와 결합한 경우에 비해 감정 상태의 분류 정확도를 향상시킬 수 있는지를 확인한다. 네 가지 특징추출 방법을 사용하여 두 개의 공개 데이터셋에서 얻은 데이터 기반의 뇌전도, 뇌전도+생체신호, 뇌전도+생체신호+무작위신호, 및 뇌전도+무작위신호의 네 가지 조합을 조사했다. 감정 상태 (작업 대 휴식 상태)는 서포트 벡터 머신과 장단기 기억망 분류기를 사용하여 분류했다. 우리의 결과는 가장 높은 정확도를 가진 서포트 벡터 머신과 고속 퓨리에 변환을 사용할 때 뇌전도+생체신호의 평균 오류율이 뇌전도+무작위신호와 뇌전도 단독 신호만을 사용한 경우에 비해 각각 4.7% 및 6.5% 높았음을 보여주었다. 우리는 또한 다양한 무작위 신호를 결합하여 뇌전도+생체신호의 오류율을 철저하게 분석했다. 뇌전도+생체신호+무작위신호의 오류율 패턴은 초기에는 깊은 이중 감소 현상으로 인해 감소하다가 차원의 저주로 인해 증가하는 V자 모양을 나타냈다. 결과적으로, 우리의 연구 결과는 뇌파와 생체신호의 결합이 항상 유망한 분류성능을 보장할 수 없음을 시사한다.