• Title/Summary/Keyword: long rainfall

Search Result 561, Processing Time 0.032 seconds

Yi-dong Basin(KARICO Experimental Site) Rainfall-Runoff Characteristics (이동유역(농기공 시험유역) 강우-유출특성)

  • Park, Jae-Heung;Huh, Yoo-Man
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.427-430
    • /
    • 2003
  • Yi-dong experimental site is operated for research on the rural basin characteristics and accumulation of a long term data by hydrological observation equipments. This basin area is 9,300ha, length 14.4km and slope 0.67%. Hydrological observation network has 3 rainfall meter3, 3 reservoir storage levels and 2 river water levels.

  • PDF

Real-time Flood Forecasting Model Based on the Condition of Soil Moisture in the Watershed (유역토양수분 추적에 의한 실시간 홍수예측모형)

  • 김태철;박승기;문종필
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.81-89
    • /
    • 1995
  • One of the most difficult problem to estimate the flood inflow is how to understand the effective rainfall. The effective rainfall is absolutely influenced by the condition of soil moisture in the watershed just before the storm event. DAWAST model developed to simulate the daily streamflow considering the meteologic and geographic characteristics in the Korean watersheds was applied to understand the soil moisture and estimate the effective rainfall rather accurately through the daily water balance in the watershed. From this soil moisture and effective rainfall, concentration time, dimensionless hydrograph, and addition of baseflow, the rainfall-runoff model for flood flow was developed by converting the concept of long-term runoff into short-term runoff. And, real-time flood forecasting model was also developed to forecast the flood-inflow hydrograph to the river and reservoir, and called RETFLO model. According to the model verification, RETFLO model can be practically applied to the medium and small river and reservoir to forecast the flood hydrograph with peak discharge, peak time, and volume. Consequently, flood forecasting and warning system in the river and the reservoir can be greatly improved by using personal computer.

  • PDF

Mesoscale Features and Forecasting Guidance of Heavy Rain Types over the Korean Peninsula (한반도 호우유형의 중규모 특성 및 예보 가이던스)

  • Kim, Sunyoung;Song, Hwan-Jin;Lee, Hyesook
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.463-480
    • /
    • 2019
  • This study classified heavy rain types from K-means clustering for the hourly relationship between rainfall intensity and cloud top height over the Korean peninsula, and then examined their statistical characteristics for the period of June~August 2013~2018. Total rainfall amount of warm-type events was 2.65 times larger than that of the cold-type, whereas the lightning frequency divided by total rainfall for the warm-type was only 46% of the cold-type. Typical cold-type cases exhibited high cloud top height around 16 km, large reflectivity in the upper layer, and frequent lightning flashes under convectively unstable condition. Phenomenally, the cold-type cases corresponded to cloud cluster or multi-cell thunderstorms. However, two warm-type cases related to Changma and typhoon were characterized by heavy rainfall due to long duration, relatively low cloud top height and upper-level reflectivity, and the absence of lightning under the convectively neutral and extremely humid conditions. This study further confirmed that the forecast skill of rainfall could be improved by applying correction factor with the overestimation for cold-type and underestimation for warm-type cases in the Local Data Assimilation and Prediction System (LDAPS) operational model (e.g., BIAS score was improved by 5%).

The Comparative Analysis of Optimization Methods for the Parameter Calibration of Rainfall-Runoff Models (강우-유출모형의 매개변수 보정을 위한 최적화 기법의 비교분석)

  • Kim, Sun-Joo;Jee, Yong-Geun;Kim, Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.3-13
    • /
    • 2005
  • The conceptual rainfall-runoff models are used to predict complex hydrological effects of a basin. However, to obtain reliable results, there are some difficulties and problems in choosing optimum model, calibrating, and verifying the chosen model suitable for hydrological characteristics of the basin. In this study, Genetic Algorithm and SCE-UA method as global optimization methods were applied to compare the each optimization technique and to analyze the application for the rainfall-runoff models. Modified TANK model that is used to calculate outflow for watershed management and reservoir operation etc. was optimized as a long term rainfall-runoff model. And storage-function model that is used to predict real-time flood using historical data was optimized as a short term rainfall-runoff model. The optimized models were applied to simulate runoff on Pyeongchang-river watershed and Bocheong-stream watershed in 2001 and 2002. In the historical data study, the Genetic Algorithm and the SCE-UA method showed consistently good results considering statistical values compared with observed data.

Analysis of Slope Hazard Triggering Factors through Field Investigation in Korea Over the Past Four Years (최근 4년간 국내 사면재해 현장조사를 통한 유발인자 분석)

  • Jun, Kyoung-Jea;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.47-58
    • /
    • 2015
  • Triggering rainfall and geologic conditions with the state of slope hazard were investigated based on the field investigation and collected data on the slope hazard during the period between 2011 and 2014 in Korea. Analysis results showed that most of slope hazards occurred in metamorphic rock and debris flow was the most frequent type of slope hazard. Slope hazard increased when the higher monthly mean rainfall was recorded. However, most of slope hazard occurred when certain time elapsed after the moment of maximum hourly rainfall. Finally, more than one month of long-term rainfall was shown to be related to the frequency of slope hazard in the period.

Influence of Typhoon Landfall and Its Track Characteristics in Gyeongsangbuk-do (경상북도에서 태풍에 의한 영향과 유형별 진로 특성 분석)

  • Park, Doo-Seon;Ho, Chang-Hoi;Hwang, Jongkook
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.525-532
    • /
    • 2008
  • This study has examined influences of tropical cyclone (TC) landfalls on the Gyoengsangbuk-do region, located in southeast of Korea, for the period 1978-2006. This region is known as one of major pass ways of landfalling TCs, and has many cultural properties including Bulguksa, Sukgulam, etc. Thus the influences caused by TCs (i.e., TC damages) may be larger than elsewhere in the nation. Here, TC influence is defined as the cases of strong instantaneous wind speed (${\geq}20ms^{-1}$) and heavy rainfall (${\geq}100mmday^{-1}$) at each station. This study analyzed long-term trends ofTC influences and the relationship with TC tracks are examined. As a result, it is found that large increase of the heavy rainfall cases along the coastal region. By contrast, there are marginal changes in the strong wind speed associated with TC landfalls. Further, it is also found that the cases of the heavy rainfall only are related with TCs passing through the Yellow Sea and the cases of both the strong wind and the heavy rainfall are related with TCs landing from southern Korea.

Correlation Analysis on the Runoff Pollutants from a Small Plot Unit in an Agricultural Area

  • Kang, Meea;Choi, Byoung-Woo;Lee, Jae-Kwan
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.191-195
    • /
    • 2010
  • This study was carried out to investigate the important factors relating to runoff and pollutant loads in a plot unit located in an agricultural area. Of the precipitation parameters, such as total precipitation, days since last rainfall (ADD, the rainfall was more than 10mm) and average rainfall intensity on runoff, the strongest effect was obtained due to total precipitation, but the rainfall intensity showed a slightly positive correlation. It was expected that both variables, i.e. total precipitation and rainfall intensity, would lead to the generation of greater runoff. In contrast, runoff was negatively correlated with ADD, which is understandable because more infiltration and less runoff would be expected after a long dry period. The TSS load varied greatly, between 75.6 and $5.18{\times}10^4g$, per event. With the exception of TN, the TSS, BOD, COD and TP loads were affected by runoff. The correlations of these items were proportional to the runoff volume, with correlation coefficients (r) greater than 0.70, which are suitable for use as NPS model data. The TSS load showed very good relationships with organics (BOD & COD) and nutrients (TN & TP), with correlation coefficients greater than 0.79. Therefore, the removal of TSS is a promising factor for protecting water basins.

A Unification of the Probable Rainfall Intensity Formula at Seoul (서울지방의 통합형 확률강우강도식)

  • Lee, Won Hwan;Park, Sang Deog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.135-143
    • /
    • 1992
  • The probable rainfall depth is an important hydrologic design data in establishing the hydraulic engineering project at urban watershed. This study is to unificate the probable rainfall intensity formula at Seoul. The probable rainfall intensity formula at Seoul is basically formed by the types of Talbot, Sherman and Japanese. But these formulae may be unified to uniform type. The unified probable rainfall intensity formula is more applicable than that of the existing types at Seoul. Especially on the probable rainfall depth of total duration the application of unified formula general type is better than existing types. In this formula, values of n are decreasing with return period and increasing with rainfall duration, and values of coefficient, b, are decreasing with the increase of return period. The range of n varies from 0.55 to 0.60 for short duration, from 0.60 to 0.82 for long duration, and from 0.60 to 0.66 for total duration of probable rainfall depth.

  • PDF

Study on Time and Spatial Distribution of Typhoon Storms (태풍성(颱風性) 강우(降雨)의 시공간(時空間) 분포(分布)에 관(關)한 연구(硏究))

  • Yoon, Kyung-Duck;Suh, Seung-Duk
    • Current Research on Agriculture and Life Sciences
    • /
    • v.15
    • /
    • pp.53-67
    • /
    • 1997
  • The objective of this study is to provide with the hydro-meteological and probabilistic characteristics of the storms of typhoons that have been passed through the Korean peninsula during the last twenty-three years since 1961. The paths and intensities of the typhoons were analyzed. Fifty weather stations were selected and the rainfall data during typhoon periods were collected. Rainfall data were analyzed for the patterns and probabilistic distributions. The results were presented to describe the areal distributions of probabilistic characteristics. The results obtained from this study can be summarized as follows: 1. The most frequent typhoon path that has passed through the Korean peninsula was type E, followed by types CWE, W, WE, and S. The most frequent typhoon intensity was type B, followed by A, super A, and e types, respectively. 2. The third quartile typhoon rainfall patterns appear most frequently followed by the second, first, and last quartiles, respectively, in Seoul, Pusan, Taegu, Kwangju and Taejon. The single typhoon rainfalls with long rainfall durations tended to show delayed type rainfall patterns predominantly compared to the single rainfalls with short rainfall durations. 3. The most frequent probabilistic distribution of typhoon rainfall event is Pearson type-III, followed by Two-parameter lognormal distribution, and Type-I extremal distribution. 4. The most frequent probability distribution model of seashore location was Pearson type-III distribution. The most frequent probability distribution model of inland location was two parameter lognormal distribution.

  • PDF

Criteria for calculation of CSO volume and frequency using rainfall-runoff model (우수유출 모형을 이용한 합류식하수관로시스템의 월류량, 월류빈도 산정 기준 결정 연구)

  • Lee, Gunyoung;Na, Yongun;Ryu, Jaena;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.313-324
    • /
    • 2013
  • It is widely known that untreated Combined Sewer Overflows (CSOs) that directly discharged from receiving water have a negative impact. Recent concerns on the CSO problem have produced several large scale constructions of treatment facilities, but the facilities are normally designed under empirical design criteria. In this study, several criteria for defining CSOs (e.g. determination of effective rainfall, sampling time, minimum duration of data used for rainfall-runoff simulation and so on) were investigated. Then this study suggested a standard methodology for the CSO calculation and support formalized standard on the design criteria for CSO facilities. Criteria decided for an effective rainfall was over 0.5 mm of total rainfall depth and at least 4 hours should be exist between two different events. An Antecedent dry weather period prior to storm event to satisfy the effective rainfall criteria was over 3 days. Sampling time for the rainfall-runoff model simulation was suggested as 1 hour. A duration of long-term simulation CSO overflow and frequency calculation should be at least recent 10 year data. A Management plan for the CSOs should be established under a phase-in of the plan. That should reflect site-specific conditions of different catchments, and formalized criteria for defining CSOs should be used to examine the management plans.