• 제목/요약/키워드: long period

검색결과 6,348건 처리시간 0.028초

복굴절이 큰 광섬유에 제작된 장주기 광섬유 격자를 이용한 광섬유 전류 센서 (Fiber-optic Ccurrent Sensor Using a Long-period Fiber Grating Inscribed on a High Birefringent Fiber)

  • 이용욱
    • 전기학회논문지
    • /
    • 제56권10호
    • /
    • pp.1823-1825
    • /
    • 2007
  • Based on Faraday effect, the variation of current flowing through the conductor can be encoded as that of azimuth angle of light polarization propagating through the fiber coil wound onto the conductor. The amount of current can be obtained by measuring the variation of the light intensity transformed from that of the azimuth angle through a polarization analyzer. In this paper we propose a fiber-optic current sensor system that employs a fiber polarization analyzer as a sensor interrogation device. The fiber polarization analyzer was prepared by inscribing a long-period fiber grating on a high birefringent fiber. At the fixed wavelength of 1522.5 nm, the fabricated fiber device has the polarization extinction ratio of more than 25 dB. The measurement of large current up to 600 Arms was accomplished based on a simple fiber interrogation device and the measurement output of the sensor system showed a good linearity.

선체의 변형을 감지하기 위한 새로운 형태의 장주기 광섬유 격자 소자 (Novel Long-period Fiber Grating devices for Monitoring the Deformation of Ship Hull)

  • 손경락
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.761-767
    • /
    • 2007
  • We have developed novel optical-fiber sensors based on strain-induced long-period fiber gratings for monitoring the deformation of a hull. They have no external pressure for sustaining the mechanical formed gratings. The pressure, which provides a force to form the periodic grating along the single mode fiber, was realized by the bonding strength of a photopolymer. To reduce the polarization dependency of the sensors caused by the asymmetry structure of gratings, a Faraday Rotator Mirror (FRM) was utilized in this experiment. We have realized the polarization-insensitive function of the proposed sensors. The change of an external strain are measured by an optical spectrum analyzer. When the external stain increases. the attenuation at the resonant wavelength decreases and the loss peak was slightly shifted to the shorter wavelength.

마이크로밴딩 장주기 광섬유 격자를 이용한 다중위치 압력감지 센서 (Multipoint Pressure-detection Sensors using Microbanding-induced Long-period Fiber Gratings)

  • 손경락;최영길;장세인;최재윤;심준환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권3호
    • /
    • pp.449-454
    • /
    • 2006
  • We present a pressure sensor based on the mechanically induced long-period fiber gratings (LPFG) for detecting the multi-location strain variation. The theoretical analysis is performed using a graphic method for a weakly guiding step-index fiber. The calculated results are in good agreement with the experimental results. In this study, from the fact that the optical parameters of a single-mode fiber slightly differ from manufacturing company to manufacturing company, the multipoint pressure-detection sensor systems composed two identical LPFGs are realized. When the pressure is applied two LPFG sensors at once, the resonance peaks are separated as much as about 40 nm. These types of sensor systems are well suited as a multipoint monitoring of strain or temperature in the ship or the smart structure.

STELLAR MAGNETIC ACTIVITY AND LONG TERM LUMINOSITY VARIATIONS OF LATE TYPE STARS.: II. STELLAR ACTIVITY PERIODS BASED ON PARKER'S DYNAMO THEORY

  • Park, Chang-Bum;Yun, Hong-Sik
    • 천문학회지
    • /
    • 제19권2호
    • /
    • pp.91-107
    • /
    • 1986
  • Making use of our extended version of $\ddot{O}pik's$ convection theory, we have calculated magnetic cycle periods of the sun and late type stars by using Parker's dynamo theory, where we have included the non-linear effect. We presented a relationship between the computed cycle period and spectral type to analyze observed magnetic activities of the late type stars and long-term luminosity variations. It is found that (1) the stellar magentic-cycle period increases towards the later spectral type, (2) the rapid rotation facilitates the activity-related luminosity variation of stars later than about K5, (3) differential rotation plays a critical role in determining the magnetic activity-cycle period, and (4) the non-local effect should be taken into account in order to understand the observed long-term luminosity variations.

  • PDF

Improvement of Coastal Wave Observation Reliability by Using Composite Type Cables

  • Nagai, Toshihiko;Kado, Hiromi;Nakayama, Masakatsu;Nakashima, Hiroyasu;Inoue, Mitsuru;Simizu, Yasuo;Nakagawa, Tohru
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 2003년도 한국해안해양공학발표논문집
    • /
    • pp.10-17
    • /
    • 2003
  • Acoustic and pressure type seabed installed wave sensors have advantage in observing long period infra-gravity wave and tsunami, while buoy type wave gauges which measure acceleration of the moored buoy motion are not able to detect long period waves. That's why most of the Japanese coastal wave observation sensors are seabed installed typed ones. Nationwide Japanese coastal wave observation systems with seabed installed sensors are gradually clarifying long-period tsunami profiles and infra-gravity wave characteristics (Nagai.et.al., 1996, 1997,2000,2002a,2002b). (omitted)

  • PDF

Design of Tunable Flat-top Bandpass Filter Based on Two Long-period Fiber Gratings and Core Mode Blocker

  • Bae, Jin-Ho;Bae, Jun-Kye;Lee, Sang-Bae
    • Journal of the Optical Society of Korea
    • /
    • 제15권2호
    • /
    • pp.202-206
    • /
    • 2011
  • We propose a tunable flat-top bandpass filter to pass light in a customized wavelength band by using long-period fiber gratings (LPFG) structure. The LPFG structure is composed of a core mode blocker in between two LPFGs. The bandpass spectrum of the proposed structure is obtained in overlapped wavelength band of two LPFGs operating on the same modes. To analyze the properties, we introduce a mathematical matrix model for the structure. We theoretically demonstrate flexibility of the flat-top bandpass filter with various bandwidths.

Study on pH Sensor using Methylene Blue Adsorption and A Long-Period Optical Fiber Grating Pair

  • Jeon Young-Hee;Kwon Jae-Joong;Lee Byoung-Ho
    • Journal of the Optical Society of Korea
    • /
    • 제10권1호
    • /
    • pp.28-32
    • /
    • 2006
  • We propose a new pH-sensing scheme using a methylene blue adsorption on an optical fiber cladding surface. Interactions between the silica and hydroxyl ions of a base solution induce the surface of the silica negatively charged. The charged surface attracts the positively charged chromophores of methylene blue. As the pH of the solution is reduced, the electrostatic attraction will also be reduced. This electrostatic attraction can change the transmitted light intensity of the cladding mode, since the boundary condition changes. We also carried out a simulation to verify the effect from external refractive index change around a long-period fiber grating. Our results confirm that the wavelength shift by external refractive index change is negligible compared to the transmitted light intensity variation of the cladding mode. By using a long-period grating pair, we can detect the cladding mode transmittance variations. Experimentally, we showed the possibility of pH sensing in the $1.5{\mu}m$ infrared region.

복굴절이 큰 광섬유에 형성된 장주기 광섬유 격자를 이용한 파장 스위칭 가능한 광섬유 고리형 레이저 (Wavelength-Switchable Fiber Ring Laser Employing a Long-Period Fiber Grating Inscribed on a High Birefringent Fiber)

  • 이용욱
    • 전기학회논문지
    • /
    • 제56권11호
    • /
    • pp.1995-1997
    • /
    • 2007
  • In this paper we propose a wavelength-switchable fiber ring laser that employs a polarization-dependent fiber band stop filter. The fiber filter was fabricated by inscribing a long-period fiber grating on a high birefringent fiber. Dual-wavelength switching operation was accomplished by controlling the rotatable linear polarizer which rotated the polarization plane of the light circulating through the fiber laser cavity. The amplitude variation of both laser lines was measured to be less than 0.5 dB and the signal-to-amplified spontaneous emission ratio was more than 55 dB.

Long-Period Harbor Oscillations in Gamcheon Harbor

  • Jeong, Weon-Mu;Lee, Kil-Seong;Park, Woo-Sun;Jung, Kyung-Tae
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 1998년도 정기학술강연회 발표논문 초록집 Annual Meeting of Korean Society of Coastal and Ocean Engineers
    • /
    • pp.117-123
    • /
    • 1998
  • Long-period wave oscillations in a harbor could create unacceptable vessel movements leading to the downtime of moored ships. It is practically very difficult to prevent long-period harbor oscillations, but extension of breakwaters at the harbor mouth could be a countermeasure in part. Narrowing a harbor mouth might give rise to increase in the energy loss due to flow separation near the mouth, which in turn makes resonant periods of the harbor become longer, especially for the first (or Helmholtz) resonant mode. (omitted)

  • PDF

Double-Side Notched Long-Period Fiber Gratings fabricated by Using an Inductively Coupled Plasma for Force Sensing

  • Fang, Yu-Lin;Huang, Tzu-Hsuan;Chiang, Chia-Chin;Wu, Chao-Wei
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1399-1404
    • /
    • 2018
  • This study used an inductively coupled plasma (ICP) dry etching process with a metal amplitude mask to fabricate a double-side notched long-period fiber grating (DNLPFG) for loading sensing. The DNLPFG exhibited increasing resonance attenuation loss for a particular wavelength when subjected to loading. When the DNLPFG was subjected to force loading, the transmission spectra were changed, showing a with wavelength shift and resonance attenuation loss. The experimental results showed that the resonant dip of the DNLPFG increased with increasing loading. The maximum resonant dip of the $40-{\mu}m$ DNLPFG sensor was -26.522 dB under 0.049-N loading, and the largest force sensitivity was -436.664 dB/N. The results demonstrate that the proposed DNLPFG has potential for force sensing applications.