• Title/Summary/Keyword: long interspersed elements-1

Search Result 11, Processing Time 0.028 seconds

Transposable Elements: No More 'Junk DNA'

  • Kim, Yun-Ji;Lee, Jungnam;Han, Kyudong
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.226-233
    • /
    • 2012
  • Since the advent of whole-genome sequencing, transposable elements (TEs), just thought to be 'junk' DNA, have been noticed because of their numerous copies in various eukaryotic genomes. Many studies about TEs have been conducted to discover their functions in their host genomes. Based on the results of those studies, it has been generally accepted that they have a function to cause genomic and genetic variations. However, their infinite functions are not fully elucidated. Through various mechanisms, including de novo TE insertions, TE insertion-mediated deletions, and recombination events, they manipulate their host genomes. In this review, we focus on Alu, L1, human endogenous retrovirus, and short interspersed element/variable number of tandem repeats/Alu (SVA) elements and discuss how they have affected primate genomes, especially the human and chimpanzee genomes, since their divergence.

Identification of hRad21-Binding Sites in Human Chromosome

  • Chin Chur;Chung Byung-Seon
    • Genomics & Informatics
    • /
    • v.4 no.1
    • /
    • pp.11-15
    • /
    • 2006
  • The aim of this study is to identify hRad21-binding sites in human chromosome, the core component of cohesin complex that held sister chromatids together. After chromatin immunoprecipitation with an hRad21 antibody, it was cloned the recovered DNA and sequenced 30 independent clones. Among them, 20 clones (67%) contained repetitive elements including short interspersed transposable elements (SINE or Alu elements), long terminal repeat (LTR) and long interspersed transposable elements (LINE), fourteen of these twenty (70%) repeats clones had Alu elements, which could be categorized as the old and the young Alu Subfamily, eleven of the fourteen (73%) Alu elements belonged to the old Alu Subfamily, and only three Alu elements were categorized as young Alu subfamily. There is no CpG island within these selected clones. Association of hRad21 with Alu was confirmed by chromatin immunoprecipitation-PCR using conserved Alu primers. The primers were designed in the flanking region of Alu, and the specific Alu element was shown in the selected clone. From these experiments, it was demonstrated that hRad21 could bind to SINE, LTRs, and LINE as well as Alu.

Comparative Analysis of Repetitive Elements of Imprinting Genes Reveals Eleven Candidate Imprinting Genes in Cattle

  • Kim, HyoYoung;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.893-899
    • /
    • 2009
  • Few studies have reported the existence of imprinted genes in cattle compared to the human and mouse. Genomic imprinting is expressed in monoallelic form and it depends on a single parent-specific form of the allele. Comparative analysis of mammals other than the human is a valuable tool for explaining the genomic basis of imprinted genes. In this study, we investigated 34 common imprinted genes in the human and mouse as well as 35 known non-imprinted genes in the human. We found short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs), and long terminal repeats (LTRs) in imprinted (human and mouse) and control (cattle) genes. Pair-wise comparisons for the three species were conducted using SINEs, LINEs, and LTRs. We also calculated 95% confidence intervals of frequencies of repetitive sequences for the three species. As a result, most genes had a similar interval between species. We found 11 genes with conserved SINEs, LINEs, and LTRs in the human, mouse, and cattle. In conclusion, eleven genes (CALCR, Grb10, HTR2A, KCNK9, Kcnq1, MEST, OSBPL5, PPP1R9A, Sgce, SLC22A18, and UBE3A) were identified as candidate imprinted genes in cattle.

Reanalysis of Ohno's hypothesis on conservation of the size of the X chromosome in mammals

  • Kim, Hyeongmin;Lee, Taeheon;Sung, Samsun;Lee, Changkyu;Kim, Heebal
    • Animal cells and systems
    • /
    • v.16 no.6
    • /
    • pp.438-446
    • /
    • 2012
  • In 1964, Susumu Ohno, an evolutionary biologist, hypothesized that the size of X chromosome was conserved in mammalian evolution, and that this was based on chromosomal length. Today, unlike Ohno's method which was based on estimated lengths, we know the exact lengths of some mammalian sequences. The aim of this study was to reanalyze Ohno's hypothesis. In mammalian species, variation in the length of the X chromosome is greater than in the autosomes; however, this variation is not statistically significant. This means that differences in chromosomal length occur equally in the X chromosome and in the autosomes. Interspersed nuclear elements and genetic rearrangements were analyzed to maintain the same variance between the length of the X chromosome and the autosomes. The X chromosome contained fewer short interspersed elements (SINEs) (0.90 on average); however, it did contain more long interspersed elements (LINEs) than did autosomes (1.56 on average). An overall correlation of LINEs and SINEs with genetic rearrangements was observed; however, synteny breaks were more closely associated with LINEs in the autosomes, and with SINEs in the X chromosome. These results suggest that the chromosome-specific activities of LINEs and SINEs result in the same variance between the lengths of the X chromosome and the autosomes. This is based on the function of interspersed nuclear elements, such as LINEs, which can inactivate the X chromosome and the reliance of non-autonomous SINEs on LINEs for transposition.

Epigenetic modification of long interspersed elements-1 in cumulus cells of mature and immature oocytes from patients with polycystic ovary syndrome

  • Pruksananonda, Kamthorn;Wasinarom, Artisa;Sereepapong, Wisan;Sirayapiwat, Porntip;Rattanatanyong, Prakasit;Mutirangura, Apiwat
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.2
    • /
    • pp.82-89
    • /
    • 2016
  • Objective: The long interspersed elements (LINE-1, L1s) are a group of genetic elements found in large numbers in the human genome that can translate into phenotype by controlling genes. Growing evidence supports the role of epigenetic in polycystic ovary syndrome (PCOS). The purpose of this study is to evaluate the DNA methylation levels in LINE-1 in a tissue-specific manner using cumulus cells from patients with PCOS compared with normal controls. Methods: The study included 19 patients with PCOS and 22 control patients who were undergoing controlled ovarian hyperstimulation. After oocyte retrieval, cumulus cells were extracted. LINE-1 DNA methylation levels were analysed by bisulfite treatment, polymerase chain reaction, and restriction enzyme digestion. The Connection Up- and Down-Regulation Expression Analysis of Microarrays software package was used to compare the gene regulatory functions of intragenic LINE-1. Results: The results showed higher LINE-1 DNA methylation levels in the cumulus cells of mature oocytes in PCOS patients, 79.14 (${\pm}2.66$) vs. 75.40 (${\pm}4.92$); p=0.004, but no difference in the methylation of cumulus cells in immature oocytes between PCOS and control patients, 70.33 (${\pm}4.79$) vs. 67.79 (${\pm}5.17$); p=0.155. However, LINE-1 DNA methylation levels were found to be higher in the cumulus cells of mature oocytes than in those of immature oocytes in both PCOS and control patients. Conclusion: These findings suggest that the epigenetic modification of LINE-1 DNA may play a role in regulating multiple gene expression that affects the pathophysiology and development of mature oocytes in PCOS.

Two Novel Families of Short Interspersed Repetitive Elements from the Mud Loach (Misgurnus mizolepis)

  • Lim, Hak-Seob;Kim, Moo-Sang;Kim, Ok-Soon;Kim, Ji-Yeon;Choi, Young-Mi;Ahn, Sang Jung;Lee, Hyung-Ho
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.186-192
    • /
    • 2006
  • Short interspersed repetitive elements (SINEs) are dispersed throughout eukaryotic genomes. These SINEs have been shown to be excellent phylogenetic markers for the closed related species. In this report, we isolated two novel families of SINEs from the mud loach. The two SINE families, mlSINE-L and mlSINE-S, have genomic lengths of about 410bp and 270bp, respectively. 5' and 3' ends of the SINE families are well conserved and highly homologous to each of corresponding ends of RSg-1 and SmaI SINEs. Phylogenetic analysis shows that mlSINEs are unique to the mud loach. A dot blot hybridization experiment shows that mlSINE-L has an estimated copy number of $1{\times}10^3$ per $2{\times}10^9bp$ (2.8 pg) and is more frequently distributed at nuclear matrix attachment regions (MARs) than loop DNAs. The result suggests that mlSINEs may preferentially integrate in or near MARs.

  • PDF

Novel Discovery of LINE-1 in a Korean Individual by a Target Enrichment Method

  • Shin, Wonseok;Mun, Seyoung;Kim, Junse;Lee, Wooseok;Park, Dong-Guk;Choi, Seungkyu;Lee, Tae Yoon;Cha, Seunghee;Han, Kyudong
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.87-95
    • /
    • 2019
  • Long interspersed element-1 (LINE-1 or L1) is an autonomous retrotransposon, which is capable of inserting into a new region of genome. Previous studies have reported that these elements lead to genomic variations and altered functions by affecting gene expression and genetic networks. Mounting evidence strongly indicates that genetic diseases or various cancers can occur as a result of retrotransposition events that involve L1s. Therefore, the development of methodologies to study the structural variations and interpersonal insertion polymorphisms by L1 element-associated changes in an individual genome is invaluable. In this study, we applied a systematic approach to identify human-specific L1s (i.e., L1Hs) through the bioinformatics analysis of high-throughput next-generation sequencing data. We identified 525 candidates that could be inferred to carry non-reference L1Hs in a Korean individual genome (KPGP9). Among them, we randomly selected 40 candidates and validated that approximately 92.5% of non-reference L1Hs were inserted into a KPGP9 genome. In addition, unlike conventional methods, our relatively simple and expedited approach was highly reproducible in confirming the L1 insertions. Taken together, our findings strongly support that the identification of non-reference L1Hs by our novel target enrichment method demonstrates its future application to genomic variation studies on the risk of cancer and genetic disorders.

Application of Transposable Elements as Molecular-marker for Cancer Diagnosis (암 진단 분자 마커로서 이동성 유전인자의 응용)

  • Kim, Hyemin;Gim, Jeong-An;Woo, Hyojeong;Hong, Jeonghyeon;Kim, Jinyeop;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1215-1224
    • /
    • 2017
  • Until now, various oncogenic pathways were idenfied. The accumulation of DNA mutation induces genomic instability in the cell, and it makes cancer. The development of bioinformatics and genomics, to find the precise and reliable biomarker is available. This biomarker could be applied the early-dignosis, prediction and convalescence of cancer. Recently, Transposable elements (TEs) have been attracted as the regulator of genes, because they occupy a half of human genome, and the cause of various diseases. TEs induce DNA mutation, as well as the regulation of gene expression, that makes to cancer development. So, we confirmed the relationship between TEs and colon cancer, and provided the clue for colon cancer biomarker. First, we confirmed long interspersed nuclear element-1 (LINE-1), Alu, and long terminal repeats (LTRs) and their relationship to colon cancer. Because these elements have large composition and enormous effect to the human genome. Interestingly, colon cancer specific patterns were detected, such as the hypomethylation of LINE-1, LINE-1 insertion in the APC gene, hypo- or hypermethylation of Alu, and isoform derived from LTR insertion. Moreover, hypomethylation of LINE-1 in proto-oncogene is used as the biomarker of colon cancer metastasis, and MLH1 mutation induced by Alu is detected in familial or hereditary colon cancer. The genes, effected by TEs, were analyzed their expression patterns by in silico analysis. Then, we provided tissue- and gender-specific expression patterns. This information can provide reliable cancer biomarker, and apply to prediction and diagnosis of colon cancer.

Sex Steroids Regulate Expression of Genes Containing Long Interspersed Elements-1s in Breast Cancer Cells

  • Chaiwongwatanakul, Saichon;Yanatatsaneejit, Pattamawadee;Tongsima, Sissades;Mutirangura, Apiwat;Boonyaratanakornkit, Viroj
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.4003-4007
    • /
    • 2016
  • Long interspersed elements-1s (LINE-1s) are dispersed all over the human genome. There is evidence that hypomethylation of LINE-1s and levels of sex steroids regulate gene expression leading to cancer development. Here, we compared mRNA levels of genes containing an intragenic LINE-1 in breast cancer cells treated with various sex steroids from Gene Expression Omnibus (GEO), with the gene expression database using chi-square analysis (http://www.ncbi.nlm.nih.gov/geo). We evaluated whether sex steroids influence expression of genes containing an intragenic LINE-1. Three sex steroids at various concentrations, 1 and 10 nM estradiol (E2), 10 nM progesterone (PG) and 10 nM androgen (AN), were assessed. In breast cancer cells treated with 1 or 10 nM E2, a significant percentage of genes containing an intragenic LINE-1 were down-regulated. A highly significant percentage of E2-regulated genes containing an intragenic LINE-1 was down-regulated in cells treated with 1 nM E2 for 3 hours (p<3.70E-25; OR=1.91; 95% CI=2.16-1.69). Similarly, high percentages of PG or AN-regulated genes containing an intragenic LINE-1 wwere also down-regulated in cells treated with 10 nM PG or 10 nM AN for 16 hr (p=9.53E-06; OR=1.65; 95% CI=2.06-1.32 and p=3.81E-14; OR=2.01; 95% CI=2.42-1.67). Interestingly, a significant percentage of AN-regulated genes containing an intragenic LINE-1 was up-regulated in cells treated with 10 nM AN for 16 hr (p=4.03E-02; OR=1.40; 95% CI=1.95-1.01). These findings suggest that intragenic LINE-1s may play roles in sex steroid mediated gene expression in breast cancer cells, which could have significant implications for the development and progression of sex steroid-dependent cancers.

LINE-1 and Alu Methylation Patterns in Lymph Node Metastases of Head and Neck Cancers

  • Kitkumthorn, Nakarin;Keelawat, Somboon;Rattanatanyong, Prakasit;Mutirangura, Apiwat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4469-4475
    • /
    • 2012
  • Background: The potential use of hypomethylation of Long INterspersed Element 1 (LINE-1) and Alu elements (Alu) as a biomarker has been comprehensively assessed in several cancers, including head and neck squamous cell carcinoma (HNSCC). Failure to detect occult metastatic head and neck tumors on radical neck lymph node dissection can affect the therapeutic measures taken. Objective: The aim of this study was to investigate the LINE-1 and Alu methylation status and determine whether it can be applied for detection of occult metastatic tumors in HNSCC cases. Methods: We used the Combine Bisulfite Restriction Analysis (COBRA) technique to analyse LINE-1 and Alu methylation status. In addition to the methylation level, LINE-1 and Alu loci were classified based on the methylation statuses of two CpG dinucleotides in each allele as follows: hypermethylation ($^mC^mC$), hypomethylation ($^uC^uC$), and 2 forms of partial methylation ($^mC^uC$ and $^uC^mC$). Sixty-one lymph nodes were divided into 3 groups: 1) non-metastatic head and neck cancer (NM), 2) histologically negative for tumor cells of cases with metastatic head and neck cancer (LN), and 3) histologically positive for tumor cells (LP). Results: Alu methylation change was not significant. However, LINE-1 methylation of both LN and LP was altered, as demonstrated by the lower LINE-1 methylation levels (p<0.001), higher percentage of $^mC^uC$ (p<0.01), lower percentage of $^uC^mC$ (p<0.001) and higher percentage of $^uC^uC$ (p<0.001). Using receiver operating characteristic (ROC) curve analysis, $%^uC^mC$ and $%^mC^uC$ values revealed a high level of AUC at 0.806 and 0.716, respectively, in distinguishing LN from NM. Conclusion: The LINE-1 methylation changes in LN have the same pattern as that in LP. This epigenomic change may be due to the presence of occult metastatic tumor in LN cases.