• Title/Summary/Keyword: long gauge sensors

Search Result 33, Processing Time 0.032 seconds

Application of FBG Sensors on a Cantilever Beam for Analyzing Behavior of Laterally Loaded Piles (실내 모형실험을 통한 수평재하 말뚝의 거동측정을 위한 FBG 센서의 적용성 평가)

  • Lee, Tae-Hee;Chung, Won-Seok;Jung, Young-Hoon;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.587-597
    • /
    • 2010
  • Analysis of the behavior of a laterally loaded pile is important in the design of critical civil structures. Recently, the electric strain gauge has been widely used to measure the strains along the pile. The electric strain gauge, due to lack of durability, is inappropriate in the use of long-term measurements. Herein, the feasibility of implementing the FBG sensor was investigated using a cantilever-type calibrator in laboratory. A special calibrating tool called "cantilever-calibrator" was used to calibrate the FBG sensors. The calibrator consists of a special calibration beam, a holding-clamp at one end of the beam, and a micrometer on the other end. Three FBG sensors were installed on the calibration beam. The strains measured by FBG sensors were compared with those calculated theoretically using cantilever beam theory. The calibration factor of FBG sensors were suggested to compensate the difference between measured and calculate strains.

  • PDF

THIN FILM SENSORS FOR AUTOMOBILE

  • Taga, Yasunori
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.459-466
    • /
    • 1996
  • A great amount of effort has been devoted to the constant improvement of such basic performance as dirvability, safety and enviromental protection. As a result, the total combination of various technologies has made it possible to produce safer and more comfortable automobiles. Among these technologies, plasma and thin film techniques are mainly cocerned with sensors, optics, electronics and surface modification. This paper first describes a concept of thin film processing in materials synthesis for sensors based on particle-surface interaction during deposition to provide a long life sensor applicable to sutomobiles. Some examples of parctical application of thin films to sensors are then given. These include(1) a thin films strain gauge for gravity sensors, (2) a giant magneto resistance film for speen sensors, and (3) a Magneto-impedance sensors fordetection of low magnetic field. Further progress of sophisticated thin film technology must be considered in detail to explore advanced thin film materials science and to ensure the field reliability of future sensor devices for automobile.

  • PDF

A Study on Calibrations of health monitoring system installed in Railway bridge (철도교 상시계측시스템의 센서교정방안 연구)

  • Lee Hyun Suk;Lee Jun Suk;Choi Il Yoon;Yim Myoung Jae
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.483-488
    • /
    • 2003
  • Calibration and gauge factor readjustment process made for the health monitoring system installed in the railway bridges is reviewed and some findings are explained in this study: specifically, the calibrators made for this purpose are illustrated and the regression processes of the calibration on long-term displacement using water level sensor, longitudinal displacement using LVDT sensor, instantaneous displacement using LVDT sensors and accelerometer are described in details. Based on the regression results, new gauge factors are obtained from regression equation and another verification is made by performing another calibration again with new factors. From the second calibration, it was found that the suggested regression curves and their factors are appropriate and much better results are expected. Future work will be concentrated on the long-term analysis of the measurement data and on the database structures so that the assessment of the structure such as damage detection and remaining life estimation is possible.

  • PDF

The Design of Controller for Unlimited Track Mobile Robot

  • Park, Han-Soo;Heon Jeong;Park, Sei-Seung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.41.6-41
    • /
    • 2001
  • As autonomous mobile robot become more widely used in industry, the importance of navigation system is rising, But eh primary method of locomotion is with wheels, which cause man problems in controlling tracked mobile robots. In this paper, we discuss the used navigation control of tracked mobile robots with multiple sensors. The multiple sensors are composed of ultrasonic wave sensors and vision sensors. Vision sensors gauge distance using a laser and create visual images, to estimate robot position. The 80196 is used at close range and the vision board is used at long range. Data is managed in the main PC and management is distributed to ever sensor. The controller employs fuzzy logic.

  • PDF

Behavior Character Analysis of Super Long Suspension Bridge using GNSS (GNSS를 활용한 초장대 현수교의 거동 특성 분석)

  • Park, Je-Sung;Hong, Seunghwan;Kim, Mi-Kyeong;Kim, Tai-Hoon;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.831-840
    • /
    • 2019
  • Recently, the span length of long-span bridges is getting longer. As a result, it has been suggested that a new concept called 'super long-span bridge'. In case of super long span bridges, the structure is being complicated and the importance of structural stability is being emphasized. However, until recently, the most commonly used sensors (dual axis clinometer, anemometer, strain gauge, etc.) have got limit about the bridge monitoring. Consequently, we researched the application of a Global Navigation Satellite System (GNSS) to improve the limit of the existing sensors. In this study, the dual axis clinometer, the anemometer and the strain gauge together with the GNSS were used to analyze the behavior of a super-long suspension bridge. Also, we propose the detailed method of bridge monitoring using the GNSS. This study consisted of three steps. First step calculated the absolute coordinates of the towers and the longitudinal axis direction of the study bridge using the GNSS. In second step, through the analysis of the long-term behavior in shortly after construction, we calculated the permanent displacement and evaluated the stability of main towers. Third step analyzed the behavior of bridge by the wind direction and was numerically indicated. Consequently, the bridge measurement using the GNSS appeared that the acquired data is able to easy processing according to the analysis purpose. If we will use together the existing measurement sensors with the GNSS on the maintenance of the super long-span bridge, we figure each error of measurement data and improve the monitoring system through calibration. As a result, we acquire the accurate displacement of bridge and figure the behavior of bridge. Consequently, we identified that it is able to construct the effective monitoring system.

Fatigue performance monitoring of full-scale PPC beams by using the FBG sensors

  • Wang, Licheng;Han, Jigang;Song, Yupu
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.943-957
    • /
    • 2014
  • When subjected to fatigue loading, the main failure mode of partially prestressed concrete (PPC) structure is the fatigue fracture of tensile reinforcement. Therefore, monitoring and evaluation of the steel stresses/strains in the structure are essential issues for structural design and healthy assessment. The current study experimentally investigates the possibility of using fiber Bragg grating (FBG) sensors to measure the steel strains in PPC beams in the process of fatigue loading. Six full-scale post-tensioned PPC beams were exposed to fatigue loading. Within the beams, the FBG and resistance strain gauge (RSG) sensors were independently bonded onto the surface of tensile reinforcements. A good agreement was found between the recorded results from the two different sensors. Moreover, FBG sensors show relatively good resistance to fatigue loading compared with RSG sensors, indicating that FBG sensors possess the capability for long-term health monitoring of the tensile reinforcement in PPC structures. Apart from the above findings, it can also be found that during the fatigue loading, there is stress redistribution between prestressed and non-prestressed reinforcements, and the residual strain emerges in the non-prestressed reinforcement. This phenomenon can bring about an increase of the steel stress in the non-prestressed reinforcement.

Development and Application of A Smart Anchor with Optical FBG Sensors (FBG 센서를 내장한 스마트 앵커의 개발과 적용)

  • Kim, Young-Sang;Suh, Dong-Nam;Kim, Jae-Min;Lee, Seung-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.393-398
    • /
    • 2008
  • With the substantial increase of the size of structure, management and monitoring of excavation for the foundation construction becomes more difficult. Therefore, massive collapses which are related to retaining wall recently increase. However, since the study on measuring and monitoring the pre-stressing force of anchor is insufficient, behavior of anchor may not be predicted and monitored appropriately by the existing strain gauge type monitoring system. FBG Sensor, which is smaller than strain gauge and has better durability and does not have a noise from electromagnetic waves, was adapted to develope a smart anchor. A series of pullout tests were performed to verify the feasibility of smart anchor and find out the load transfer mechanism around the steel wire fixed to rock with grout.

  • PDF

Force monitoring of Galfan cables in a long-span cable-truss string-support system based on the magnetic flux method

  • Yuxin Zhang;Xiang Tian;Juwei Xia;Hexin Zhang
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.261-281
    • /
    • 2023
  • Magnetic flux sensors are commonly used in monitoring the cable force, but the application of the sensors in large diameter non-closed Galfan cables, as those adopted in Yueqing Gymnasium which is located in Yueqing City, Zhejiang Province, China and is the largest span hybrid space structure in the world, is seldom done in engineering. Based on the construction of Yueqing Gymnasium, this paper studies the cable tension monitoring using the magnetic flux method across two stages, namely, the pre-calibration stage before the cable leaves the rigging factory and the field tension formation stage of the cable system. In the pre-calibration stage in the cable factory, a series of 1:1 full-scale comparative tests were carried out to study the feasibility and relability of this kind of monitoring method, and the influence on the monitoring results of charging and discharging voltage, sensor location, cable diameter and fitting method were also studied. Some meaningful conclusions were obtained. On this basis, the real-time cable tension monitoring system of the structure based on the magnetic flux method is established. During the construction process, the monitoring results of the cables are in good agreement with the data of the on-site pressure gauge.The work of this paper will provide a useful reference for cable force monitoring in the construction process of long-span spatial structures.

FBG Sensor Signal Processing System using SLD Tunable Light Source and Etalon Filter (SLD동조 광원과 에탈론 필터를 이용한 FBG 센서 신호처리 시스템)

  • Chung, Chul;Lee, Ho-Joon;Kim, Ki-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.39-44
    • /
    • 2004
  • Fiber Bragg grating sensors are fabricated by core index modulation using UV laser and phasemask. Bragg wavelength of the grating is changed by the external strain. In this paper, a signal processing system of fiber Bragg grating sensor has studied in the optical wavelength domain. The system is based on the sweep semiconductor light source that consists of SLD, F-P tunable filter and etalon filter. The hysteresis effects of PZT in the F-P tunable filter are compensated. The long term measurement stability is obtained by controlling the temperature of F-P tunable filter and the SLD. We compare the strain data from fiber Bragg grating sensor and that from strain gauge at concrete hume pipe. We also get very good results for the long gauge displacement using fiber Bragg grating sensor which are identical to the data with short gauge length ordinary displacement sensor.

A Study on the Development of Sleep Monitoring Smart Wear based on Fiber Sensor for the Management of Sleep Apnea (수면 무호흡증 관리를 위한 섬유센서 기반의 슬립 모니터링 스마트 웨어 개발에 관한 연구)

  • Park, Jin-Hee;Kim, Joo-Yong
    • Science of Emotion and Sensibility
    • /
    • v.22 no.1
    • /
    • pp.89-100
    • /
    • 2019
  • Sleep apnea, a medical condition associated with a variety of complications, is generally monitored by standard sleep polysomnography, which is expensive and uncomfortable. To overcome these limitations, this study proposes an unconstrained wearable monitoring system with stretch-fiber sensors that integrate with the wearer's clothing. The system allows patients to undergo examinations in a familiar environment while minimizing the occurrence of skin allergies caused by adhesive tools. As smart clothing for adult males with sleep apnea, long-sleeved T-shirts embedding fibrous sensors were developed, enabling real-time monitoring of the patients' breathing rate, oxygen saturation, and airflow as sleep apnea diagnostic indicators. The gauge factor was measured as 20.3 in sample 4. The maximum breathing intake, measured during three large breaths, was 2048 ml. the oxygen saturation was measured before and during breath-holding. The oxygen saturation change was 69.45%, showing a minimum measurable oxygen saturation of 70%. After washing the garment, the gauge factor reduced only to 18.0, confirming the durability of the proposed system. The wearable sleep apnea monitoring smart clothes are readily available in the home and can measure three indicators of sleep apnea: respiration rate, breathing flow and oxygen saturation.