• Title/Summary/Keyword: long electrode

Search Result 415, Processing Time 0.024 seconds

Development and Structural Design of Textile Touch Sensor Easily Implemented (구현방식이 용이한 텍스타일 터치센서 개발 및 구조적 설계)

  • Kim, Ji-seon;Park, Jinhee;Kim, Jooyoung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.1
    • /
    • pp.168-179
    • /
    • 2021
  • This study presents and develops a textile type touch sensor structural design that is easy to implement. First, the design of the touch sensor circuit finds the size of the switch with the easiest finger contact and selects a structure with a long circuit with the lowest resistance value. An experiment is performed on a change in an electrostatic capacitance value that accompanies the distance on the electrode and the magnitude of the electrode area of the structure; however, the structure having the distance on the electrode and the large electrode area shows the best resistance change. The laundry assessment was conducted three times at a time and ten times at a time with an average standard deviation less than one ohm, with little change in resistance. Consequently, there were no problems with durability and performance for laundry. Finally, in the bending evaluation, the difference in resistance can be seen between 1-2 ohms and was developed as a smart wearable in the future; in addition, there was no problem as a difference in resistance can be seen between 1 and 2 ohms.

Suppressing Effect of Hydrogen Evolution by Oxygen Functional Groups on CNT/ Graphite Felt Electrode for Vanadium Redox Flow Battery (탄소나노튜브/흑연펠트 전극의 산소작용기를 활용한 바나듐 레독스 흐름 전지의 수소발생 억제 효과)

  • Kim, Minseong;Ko, Minseong
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.4
    • /
    • pp.164-170
    • /
    • 2021
  • Vanadium redox flow batteries (VRFB) have emerged as large-scale energy storage systems (ESS) due to their advantages such as low cross-contamination, long life, and flexible design. However, Hydrogen evolution reaction (HER) in the negative half-cell causes a harmful influence on the performance of the VRFB by consuming current. Moreover, HER hinders V2+/V3+ redox reaction between electrode and electrolyte by forming a bubble. To address the HER problem, carbon nanotube/graphite felt electrode (CNT/GF) with oxygen functional groups was synthesized through the hydrothermal method in the H2SO4 + HNO3 (3:1) mixed acid solution. These oxygen functional groups on the CNT/GF succeed in suppressing the HER and improving charge transfer for V2+/V3+ redox reaction. As a result, the oxygen functional group applied electrode exhibited a low overpotential of 0.395 V for V2+/V3+ redox reaction. Hence, this work could offer a new strategy to design and synthesize effective electrodes for HER suppression and improving the energy density of VRFB.

Fabrication of Pt/Carbon Nanotube Composite Based Electrochemical Hydrogen Sulfide Gas Sensor using 3D Printing (3D 프린팅을 이용한 Pt/Carbon Nanotube composite 기반 전기화학식 황화수소 가스 센서 제작)

  • Yuntae Ha;JinBeom Kwon;Suji Choi;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.290-294
    • /
    • 2023
  • Among various types of harmful gases, hydrogen sulfide is a strong toxic gas that is mainly generated during spillage and wastewater treatment at industrial sites. Hydrogen sulfide can irritate the conjunctiva even at low concentrations of less than 10 ppm, cause coughing, paralysis of smell and respiratory failure at a concentration of 100 ppm, and coma and permanent brain loss at concentrations above 1000 ppm. Therefore, rapid detection of hydrogen sulfide among harmful gases is extremely important for our safety, health, and comfortable living environment. Most hydrogen sulfide gas sensors that have been reported are electrical resistive metal oxide-based semiconductor gas sensors that are easy to manufacture and mass-produce and have the advantage of high sensitivity; however, they have low gas selectivity. In contrast, the electrochemical sensor measures the concentration of hydrogen sulfide using an electrochemical reaction between hydrogen sulfide, an electrode, and an electrolyte. Electrochemical sensors have various advantages, including sensitivity, selectivity, fast response time, and the ability to measure room temperature. However, most electrochemical hydrogen sulfide gas sensors depend on imports. Although domestic technologies and products exist, more research is required on their long-term stability and reliability. Therefore, this study includes the processes from electrode material synthesis to sensor fabrication and characteristic evaluation, and introduces the sensor structure design and material selection to improve the sensitivity and selectivity of the sensor. A sensor case was fabricated using a 3D printer, and an Ag reference electrode, and a Pt counter electrode were deposited and applied to a Polytetrafluoroethylene (PTFE) filter using PVD. The working electrode was also deposited on a PTFE filter using vacuum filtration, and an electrochemical hydrogen sulfide gas sensor capable of measuring concentrations as low as 0.6 ppm was developed.

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

  • Jwa, Yong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.3.1-3.1
    • /
    • 2011
  • Nanoengineered materials with advanced architectures are critical building blocks to modulate conventional material properties or amplify interface behavior for enhanced device performance. While several techniques exist for creating one dimensional heterostructures, electrospinning has emerged as a versatile, scalable, and cost-effective method to synthesize ultra-long nanofibers with controlled diameter (a few nanometres to several micrometres) and composition. In addition, different morphologies (e.g., nano-webs, beaded or smooth cylindrical fibers, and nanoribbons) and structures (e.g., core-.shell, hollow, branched, helical and porous structures) can be readily obtained by controlling different processing parameters. Although various nanofibers including polymers, carbon, ceramics and metals have been synthesized using direct electrospinning or through post-spinning processes, limited works were reported on the compound semiconducting nanofibers because of incompatibility of precursors. In this work, we combined electrospinning and galvanic displacement reaction to demonstrate cost-effective high throughput fabrication of ultra-long hollow semiconducting chalcogen and chalcogenide nanofibers. This procedure exploits electrospinning to fabricate ultra-long sacrificial nanofibers with controlled dimensions, morphology, and crystal structures, providing a large material database to tune electrode potentials, thereby imparting control over the composition and shape of the nanostructures that evolved during galvanic displacement reaction.

  • PDF

Effect of MEA fabrication on the performance degradation of DMFC (MEA 제조 방법에 따른 직접 메탄올 연료전지의 성능저하 현상 평가)

  • Cho, Yoon-Hwan;Cho, Yong-Hun;Park, Hyun-Seo;Won, Ho-Youn;Sung, Yung-Eun
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.60-67
    • /
    • 2007
  • Catalyst coated membrane [CCM] type and catalyst coated substrate [CCS] type of membrane electrode assembly [MEA] were manufactured and evaluated their performance. Degradation test were conducted to find the difference of long term stability in two types of MEA and the factor for performance degradation problem occurred. Performance degradation test of single cell in two different types of MEA were carried out when current density was $200mA/cm^{2}$. The degradation test had proceeded for 230 hours and performance degradation was checked by I-V curve and impedance measurement at regular intervals. Also, MEA before/after operation and changes of catalyst layer were characterized by SEM, TEM, and XRD. Maximum power density of CCM type was higher than that of CCS type. Meanwhile, an increase of particle size of catalyst and an increase of impedance resistance after long term operation were observed. In the case of using CCM type MEA, the performance was deteriorated 38% of initial performance. In the case of using CCS type MEA, the performance was deteriorated 43% of initial performance. In consideration of difference of initial performance, performance of CCM type is higher than that of CCS type but both types had similar problems during degradation test.

  • PDF

Evaluation of the Performance of Water Electrolysis Cells and Stacks for High-Altitude Long Endurance Unmanned Aerial Vehicle (고고도 무인기용 수전해 셀 및 스택의 제작 및 성능 평가)

  • JUNG, HYE YOUNG;LEE, JUNYOUNG;YOON, DAEJIN;HAN, CHANGHYUN;SONG, MINAH;LIM, SUHYUN;MOON, SANGBONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.341-348
    • /
    • 2016
  • The experiments related on structure and water electrolysis performance of HALE UAV stack were conducted in this study. Anode catalyst $IrRuO_2$ was prepared by Adam's fusion methods as 2~3 nm nano sized particles, and the cathode catalyst was used as commercial product of Premetek. The MEA (membrane electrode assembly) was manufactured by decal methods, anode and anode catalytic layers were prepared by electro-spray. HALE stack was composed of 5 multi-cells as $0.2Nm^3/hr$ hydrogen production rate with hydrogen pressure as 10 bar. The water electrolysis performance was investigated at atmospheric pressure and temperature of $55^{\circ}C$. Best performance of HALE UAV stack was recorded as cell voltage efficiency as 86%.

Study of Driving and Thermal Stability of Anode-type Ion Beam Source by Charge Repulsion Mechanism

  • Huh, Yunsung;Hwang, Yunseok;Kim, Jeha
    • Applied Science and Convergence Technology
    • /
    • v.27 no.3
    • /
    • pp.47-51
    • /
    • 2018
  • We fabricated an anode-type ion beam source and studied its driving characteristics of the initial extraction of ions using two driving mechanisms: a diffusion phenomenon and a charge repulsion phenomenon. For specimen exposed to the ion beam in two methods, the surface impurity element was investigated by using X-ray photoelectron spectroscopy. Upon Ar gas injection for plasma generation the ion beam source was operated for 48 hours. We found a Fe 2p peak 5.4 at. % in the initial ions by the diffusion mechanism while no indication of Fe in the ions released in the charge repulsion mechanism. As for a long operation of 200 min, the temperature of ion beam sources was measured to increase at the rate of ${\sim}0.1^{\circ}C/min$ and kept at the initial value of $27^{\circ}C$ for driving by diffusion and charge repulsion mechanism, respectively. In this study, we confirmed that the ion beam source driven by the charge repulsion mechanism was very efficient for a long operation as proved by little electrode damage and thermal stability.

A Study on the Evaluation of Deterioration Properties of Reinforced Concrete Applied Repair Material and Method System by Long Term Exposure Experiment (장기폭로실험에 의한 철근콘크리트 보수재료공법 시스템의 열화특성 평가에 관한 연구)

  • Choi, Hyeong-Gil;Shin, Kwan-Soo;Shin, Seung-Bong;Na, Chul-Sung;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.129-132
    • /
    • 2007
  • In this study, for the establishment of the performance evaluation methods of repair material and method for reinforced concrete structure and the quality control standards of durability recovery method, the quantitative exposure data by exposure experiment under the coastal and normal atmosphere environment is accumulated and analyzed. Investigating and evaluating the result of exposure experiment during 54 months of exposure age under the coastal and normal atmosphere environment, Micro crack, swelling and spatting of surface coating material, crack of repair boundary parts and the great potential difference between repair part and non-repair part were somewhat generated. And the result shown that exposure specimen of coastal environment had lower electrode potential than exposure specimen of normal atmosphere environment.

  • PDF

Amperometric Detection of Hydroquinone and Homogentisic Acid with Laccase Immobilized Platinum Electrode

  • Quan, De;Shin, Woon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.833-837
    • /
    • 2004
  • DeniLite$^{TM}$ laccase immobilized platinum electrode was used for amperometric detection of hydroquinone (HQ) and homogentisic acid (HGA) by means of substrate recycling. In case of HQ, the obtained sensitivity is 280 nA/ ${\mu}$M with linear range of 0.2-35 ${\mu}$M ($r^2$ = 0.998) and detection limit (S/N = 3) of 50 nM. This high sensitivity can be attributed to chemical amplification due to the cycling of the substrate caused by enzymatic oxidation and following electrochemical regeneration. In case of HGA, the obtained sensitivity is 53 nA/ ${\mu}$M with linear range of 1-50 $[\mu}M\;(r^2$ = 0.999) and detection limit of 0.3 ${\mu}$M. The response times ($t_{90%}$) are about 2 seconds for the two substrates and the long-term stability is 60 days for HQ and around 40-50 days for HGA with retaining 80% of initial activities. The very fast response and the durable long-term stability are the principal advantages of this sensor. pH studies show that optimal pH of the sensor for HQ is 6.0 and that for HGA is 4.5-5.0. This shift of optimal pH towards acidic range for HGA can be attributed to the balance between enzyme activity and accessibility of the substrate to the active site of the enzyme.