• 제목/요약/키워드: long distance face recognition

검색결과 12건 처리시간 0.016초

지능형 영상 보안 시스템의 얼굴 인식 성능 향상을 위한 얼굴 영역 초해상도 하드웨어 설계 (Hardware Design of Super Resolution on Human Faces for Improving Face Recognition Performance of Intelligent Video Surveillance Systems)

  • 김초롱;정용진
    • 대한전자공학회논문지SD
    • /
    • 제48권9호
    • /
    • pp.22-30
    • /
    • 2011
  • 최근 카메라를 통해 입력된 영상정보로부터 실시간으로 상황을 인지하고 자율 대응할 수 있는 지능형 영상 보안 시스템의 수요가 증가함에 따라, 고성능의 얼굴 인식 시스템이 요구되고 있다. 기존의 얼굴 인식 시스템의 성능 향상을 위해서는 원거리에서 획득된 저해상도 얼굴 영상 처리를 위한 솔루션이 반드시 필요하다. 따라서 본 논문에서는 실시간 감시가 요구되는 지능형 영상 보안 시스템의 얼굴 인식 성능 향상을 위한 저해상도 얼굴 영상 복원 알고리즘을 하드웨어로 구현하였다. 저해상도 얼굴 영상 복원 방법으로는 학습 기반의 초해상도 알고리즘을 사용한다. 해당 알고리즘은 먼저 고해상도 영상으로 구성된 학습 집합에서 주성분 분석(PCA)을 활용하여 복원에 필요한 사전 정보들을 추출하고, 저해상도 영상과의 관계를 모델링하여 가장 적합한 고해상도 얼굴을 복원해내는 것이다. 저해상도 얼굴 영상 복원 알고리즘을 임베디드 프로세서(S3C2440A)를 사용하여 구현하였을 때, 약 25 초의 긴 연산 시간이 소요되었다. 이는 실시간으로 사람을 판별 및 인식하기 위한 지능형 영상 보안 시스템의 구축에는 어려움이 있다. 이를 해결하기 위하여 얼굴 영역 초해상도의 연산을 하드웨어로 구현하고 Xilinx Virtex-4를 이용하여 검증하였다. 약 9MB의 학습 데이터를 사용하였으며, 100 MHz에서 약 30 fps의 속도로 연산이 가능하다. 이러한 학습 기반의 얼굴 영역 초해상도 알고리즘을 단일 하드웨어 IP로 설계함으로써 임베디드 환경에서의 실시간 처리가 가능할 뿐 만 아니라 기존의 다양한 얼굴 검출 시스템과의 통합이 용이하여 얼굴 인식 솔루션을 제공할 수 있을 것으로 판단된다.

지지 벡터 데이터 기술을 이용한 가려진 얼굴 요소 복원 (Reconstructing Occluded Facial Components using Support Vector Data Description)

  • 김경호;정윤수;이상웅
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권4호
    • /
    • pp.457-461
    • /
    • 2010
  • 얼굴 인식 분야는 오래전부터 꾸준히 연구되어 왔지만, 아직도 실용적인 얼굴 인식은 이루어지지 않고 있다. 이는 실제 얼굴 인식 시스템의 입력 영상의 경우, 실험실에서 획득된 얼굴 영상과는 달리 안경이나 스카프, 헤어스타일 등에 의해서 가려진 얼굴 영상인 경우에 인식 성능이 매우 저하되는 것에 기인한다. 이러한 비 얼굴 요소를 처리하기 위해, 최근 수년간 다양한 방식의 비 얼굴 요소처리 방법이 있었으나, 만족할만한 성능을 보이지 못했다. 본 논문에서는, 최근 관련 방법 중에서 특징 공간에서 최소거리의 볼을 찾아 근사값을 추정하는 방식인 SVDD를 이용하는 비 얼굴 요소 복원 방법을 제안하고, 실험을 통해 성능을 평가한다. 제안 방법의 실효성을 검증하기 위해, 비얼굴 요소 부분을 점진적으로 증가시켜 복원하는 실험 등 을 통해 실험한 결과, 제안 방법은 상당한 수준의 실효성을지니고 있음을 확인하였다.