• 제목/요약/키워드: long & short term memory

검색결과 643건 처리시간 0.028초

3축 가속 센서의 가공 파라미터를 장단기 메모리에 적용한 낙상감지 시스템 연구 (Study of the Fall Detection System Applying the Parameters Claculated from the 3-axis Acceleration Sensor to Long Short-term Memory)

  • 정승수;김남호;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.391-393
    • /
    • 2021
  • 본 논문에서는 일상생활에서의 고령자에게 나타날 수 있는 낙상상황을 감지할 수 있는 텐서플로우를 이용한 장단기 메모리 기반 낙상감지 시스템에 대하여 소개한다. 낙상감지를 위해서 3축 가속도 센서 데이터를 이용하고, 이를 처리하여 다양한 파라미터화하며 일상생활 패턴 4가지, 낙상상황 패턴 3가지로 분류한다. 파라미터화한 데이터는 정규화 과정을 따르며, 학습이 진행된다. 학습은 Loss값이 0.5 이하가 될 때까지 진행된다. 각각의 파라미터인 θ, SVM (Sum Vector Magnitude), GSVM (gravity-weight SVM)에 대하여 결과를 산출한다. 가장 좋은 결과는 GSVM으로 Sensitivity 98.75%, Specificity 99.68%, Accuracy 99.28%로 가장 좋은 결과를 보였다.

  • PDF

Automated structural modal analysis method using long short-term memory network

  • Jaehyung Park;Jongwon Jung;Seunghee Park;Hyungchul Yoon
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.45-56
    • /
    • 2023
  • Vibration-based structural health monitoring is used to ensure the safety of structures by installing sensors in structures. The peak picking method, one of the applications of vibration-based structural health monitoring, is a method that analyze the dynamic characteristics of a structure using the peaks of the frequency response function. However, the results may vary depending on the person predicting the peak point; further, the method does not predict the exact peak point in the presence of noise. To overcome the limitations of the existing peak picking methods, this study proposes a new method to automate the modal analysis process by utilizing long short-term memory, a type of recurrent neural network. The method proposed in this study uses the time series data of the frequency response function directly as the input of the LSTM network. In addition, the proposed method improved the accuracy by using the phase as well as amplitude information of the frequency response function. Simulation experiments and lab-scale model experiments are performed to verify the performance of the LSTM network developed in this study. The result reported a modal assurance criterion of 0.8107, and it is expected that the dynamic characteristics of a civil structure can be predicted with high accuracy using data without experts.

Servo control strategy for uni-axial shake tables using long short-term memory networks

  • Pei-Ching Chen;Kui-Xing Lai
    • Smart Structures and Systems
    • /
    • 제32권6호
    • /
    • pp.359-369
    • /
    • 2023
  • Servo-motor driven uniaxial shake tables have been widely used for education and research purposes in earthquake engineering. These shake tables are mostly displacement-controlled by a digital proportional-integral-derivative (PID) controller; however, accurate reproduction of acceleration time histories is not guaranteed. In this study, a control strategy is proposed and verified for uniaxial shake tables driven by a servo-motor. This strategy incorporates a deep-learning algorithm named Long Short-Term Memory (LSTM) network into a displacement PID feedback controller. The LSTM controller is trained by using a large number of experimental data of a self-made servo-motor driven uniaxial shake table. After the training is completed, the LSTM controller is implemented for directly generating the command voltage for the servo motor to drive the shake table. Meanwhile, a displacement PID controller is tuned and implemented close to the LSTM controller to prevent the shake table from permanent drift. The control strategy is named the LSTM-PID control scheme. Experimental results demonstrate that the proposed LSTM-PID improves the acceleration tracking performance of the uniaxial shake table for both bare condition and loaded condition with a slender specimen.

A SE Approach for Machine Learning Prediction of the Response of an NPP Undergoing CEA Ejection Accident

  • Ditsietsi Malale;Aya Diab
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.18-31
    • /
    • 2023
  • Exploring artificial intelligence and machine learning for nuclear safety has witnessed increased interest in recent years. To contribute to this area of research, a machine learning model capable of accurately predicting nuclear power plant response with minimal computational cost is proposed. To develop a robust machine learning model, the Best Estimate Plus Uncertainty (BEPU) approach was used to generate a database to train three models and select the best of the three. The BEPU analysis was performed by coupling Dakota platform with the best estimate thermal hydraulics code RELAP/SCDAPSIM/MOD 3.4. The Code Scaling Applicability and Uncertainty approach was adopted, along with Wilks' theorem to obtain a statistically representative sample that satisfies the USNRC 95/95 rule with 95% probability and 95% confidence level. The generated database was used to train three models based on Recurrent Neural Networks; specifically, Long Short-Term Memory, Gated Recurrent Unit, and a hybrid model with Long Short-Term Memory coupled to Convolutional Neural Network. In this paper, the System Engineering approach was utilized to identify requirements, stakeholders, and functional and physical architecture to develop this project and ensure success in verification and validation activities necessary to ensure the efficient development of ML meta-models capable of predicting of the nuclear power plant response.

Carbonation depth prediction of concrete bridges based on long short-term memory

  • Youn Sang Cho;Man Sung Kang;Hyun Jun Jung;Yun-Kyu An
    • Smart Structures and Systems
    • /
    • 제33권5호
    • /
    • pp.325-332
    • /
    • 2024
  • This study proposes a novel long short-term memory (LSTM)-based approach for predicting carbonation depth, with the aim of enhancing the durability evaluation of concrete structures. Conventional carbonation depth prediction relies on statistical methodologies using carbonation influencing factors and in-situ carbonation depth data. However, applying in-situ data for predictive modeling faces challenges due to the lack of time-series data. To address this limitation, an LSTM-based carbonation depth prediction technique is proposed. First, training data are generated through random sampling from the distribution of carbonation velocity coefficients, which are calculated from in-situ carbonation depth data. Subsequently, a Bayesian theorem is applied to tailor the training data for each target bridge, which are depending on surrounding environmental conditions. Ultimately, the LSTM model predicts the time-dependent carbonation depth data for the target bridge. To examine the feasibility of this technique, a carbonation depth dataset from 3,960 in-situ bridges was used for training, and untrained time-series data from the Miho River bridge in the Republic of Korea were used for experimental validation. The results of the experimental validation demonstrate a significant reduction in prediction error from 8.19% to 1.75% compared with the conventional statistical method. Furthermore, the LSTM prediction result can be enhanced by sequentially updating the LSTM model using actual time-series measurement data.

LSTM을 활용한 고위험성 조류인플루엔자(HPAI) 확산 경로 예측 (Prediction of Highy Pathogenic Avian Influenza(HPAI) Diffusion Path Using LSTM)

  • 최대우;이원빈;송유한;강태훈;한예지
    • 한국빅데이터학회지
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2020
  • 이 연구는 2018년도 정부(농림축산식품부)의 재원으로 농림식품기술기획평가원 지원을 받아 수행된 연구이다. 최근 시계열 및 텍스트 마이닝에서 활발히 사용되는 모델은 딥러닝(Deep Learning) 모델 구조를 활용한 LSTM(Long Short-Term Memory models) 모델이다. LSTM 모델은 RNN의 BPTT(Backpropagation Through Time) 과정에서 발생하는 Long-Term Dependency Problem을 해결하기 위해 등장한 모델이다. LSTM 모델은 가변적인 Sequence data를 활용하여 예측하는 문제를 굉장히 잘 해결했고, 지금도 널리 사용되고 있다. 본 논문 연구에서는 KT가 제공하는 CDR(Call Detailed Record) 데이터를 활용하여 바이러스와 밀접한 관계가 있을 것으로 예측되는 사람의 이동 경로를 파악하였다. 해당 사람의 경로를 활용하여 LSTM 모델을 학습시켜 이동 경로를 예측한 결과를 소개한다. 본 연구 결과를 활용하여 HPAI가 전파되는 경로를 예측하여 방역에 중점을 둘 경로 또는 지역을 선정해 HPAI 확산을 줄이는 데 이용될 수 있을 것이다.

Optimizing Artificial Neural Network-Based Models to Predict Rice Blast Epidemics in Korea

  • Lee, Kyung-Tae;Han, Juhyeong;Kim, Kwang-Hyung
    • The Plant Pathology Journal
    • /
    • 제38권4호
    • /
    • pp.395-402
    • /
    • 2022
  • To predict rice blast, many machine learning methods have been proposed. As the quality and quantity of input data are essential for machine learning techniques, this study develops three artificial neural network (ANN)-based rice blast prediction models by combining two ANN models, the feed-forward neural network (FFNN) and long short-term memory, with diverse input datasets, and compares their performance. The Blast_Weathe long short-term memory r_FFNN model had the highest recall score (66.3%) for rice blast prediction. This model requires two types of input data: blast occurrence data for the last 3 years and weather data (daily maximum temperature, relative humidity, and precipitation) between January and July of the prediction year. This study showed that the performance of an ANN-based disease prediction model was improved by applying suitable machine learning techniques together with the optimization of hyperparameter tuning involving input data. Moreover, we highlight the importance of the systematic collection of long-term disease data.

문서의 감정 분류를 위한 주목 방법 기반의 딥러닝 인코더 (An Attention Method-based Deep Learning Encoder for the Sentiment Classification of Documents)

  • 권순재;김주애;강상우;서정연
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권4호
    • /
    • pp.268-273
    • /
    • 2017
  • 최근 감정 분류 분야에서 딥러닝 인코더 기반의 접근 방법이 활발히 적용되고 있다. 딥러닝 인코더 기반의 접근 방법은 가변 길이 문장을 고정 길이 문서 벡터로 압축하여 표현한다. 하지만 딥러닝 인코더에 흔히 사용되는 구조인 장 단기 기억망(Long Short-Term Memory network) 딥러닝 인코더는 문서가 길어지는 경우, 문서 벡터 표현의 품질이 저하된다고 알려져 있다. 본 논문에서는 효과적인 감정 문서의 분류를 위해, 장 단기 기억망의 출력을 중요도에 따라 가중합하여 문서 벡터 표현을 생성하는 주목방법 기반의 딥러닝 인코더를 사용하는 것을 제안한다. 또한, 주목 방법 기반의 딥러닝 인코더를 문서의 감정 분류 영역에 맞게 수정하는 방법을 제안한다. 제안하는 방법은 윈도우 주목 방법(Window Attention Method)을 적용한 단계와 주목 가중치 재조정(Weight Adjustment) 단계로 구성된다. 윈도우 주목 방법은 한 단어 이상으로 구성된 감정 자질을 효과적으로 인식하기 위해, 윈도우 단위로 가중치를 학습한다. 주목 가중치 재조정에서는 학습된 가중치를 평활화(Smoothing) 한다, 실험 결과, 본 논문에서 제안하는 방법은 정확도 기준으로 89.67%의 성능을 나타내어 장 단기 기억망 인코더보다 높은 성능을 보였다.

Effects of Long- and Short-term Consumption of Energy Drinks on Anxiety-like, Depression-like, and Cognitive Behavior in Adolescent Rats

  • Lee, Joo Hee;Lee, Jong Hyeon;Choi, You Jeong;Kim, Youn Jung
    • Journal of Korean Biological Nursing Science
    • /
    • 제22권2호
    • /
    • pp.111-118
    • /
    • 2020
  • Purpose: The purpose of this study was to understand the impact of long- and short-term energy drinks on anxiety-like, depressionlike, and cognitive behavior in adolescent rats. Methods: Adolescent rats (age six weeks) were randomly classified into a control group (CON), a long-term administration group (LT), and a short-term administration group (ST). The LT group was orally administered 1.5 mL/100 g (body weight) of energy drink twice daily for 14 days, the ST group was orally administered for one day, and the control group applied the same amount of normal saline. Later, an open-field test, a forced swim test, novel object recognition test, and an 8-arm radial maze test was conducted to assess the rats' anxiety, depression, and cognitive function. Results: There were different effects in the long- and short-term groups of energy drink administration. In the LT group, anxiety- and depressive-like behavior increased because of increased movement in the side corner and decrease of immobility time. Also, the time to explore novel objects decreased, and the number of correct responses was reduced, indicating a learning and memory function disorder. However, the ST group was not different from the control group. Conclusion: These results indicate that long-term consumption of energy drinks can increase anxiety-like, depression-like behavior, and this can lead to decrease in learning and memory functions. Thus, nurse and health care providers should understand the impact of energy drink consumption in adolescence to provide appropriate practices and education.

건물 예측 제어용 LSTM 기반 일사 예측 모델 (Development of a Prediction Model of Solar Irradiances Using LSTM for Use in Building Predictive Control)

  • 전병기;이경호;김의종
    • 한국태양에너지학회 논문집
    • /
    • 제39권5호
    • /
    • pp.41-52
    • /
    • 2019
  • The purpose of the work is to develop a simple solar irradiance prediction model using a deep learning method, the LSTM (long term short term memory). Other than existing prediction models, the proposed one uses only the cloudiness among the information forecasted from the national meterological forecast center. The future cloudiness is generally announced with four categories and for three-hour intervals. In this work, a daily irradiance pattern is used as an input vector to the LSTM together with that cloudiness information. The proposed model showed an error of 5% for learning and 30% for prediction. This level of error has lower influence on the load prediction in typical building cases.