• Title/Summary/Keyword: logic tool

Search Result 334, Processing Time 0.03 seconds

Synthesis of Multi-level Reed Muller Circuits using BDDs (BDD를 이용한 다단계 리드뮬러회로의 합성)

  • Jang, Jun-Yeong;Lee, Gwi-Sang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.3
    • /
    • pp.640-654
    • /
    • 1996
  • This paper presents a synthesis method for multi-level Reed-Muller circuits using BDDs(Binary Decision Diagrams). The existing synthesis tool for Reed circuits, FACTOR, is not appropriate to the synthesis of large circuits because it uses matrix (map-type) to represent given logic functions, resulting in the exponential time and space in number of imput to the circuits. For solving this problems, a syntheisis method based on BDD is presented. Using BDDs, logic functions are represented compactly. Therefor storage spaces and computing time for synthesizing logic functions were greatly decreased, and this technique can be easily applied to large circuits. Using BDD representations, the proposed method extract best patterns to minimize multi-level Reed Muller circuits with good performance in area optimization and testability. Experimental results using the proposed method show better performance than those using previous methods〔2〕. For large circuits of considering the best input partition, synthesis results have been improved.

  • PDF

Fuzzy FMEA for Rotorcraft Landing System (회전익 항공기 착륙장치에 대한 퍼지 FMEA)

  • Na, Seong-Hyeon;Lee, Gwang-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.751-758
    • /
    • 2021
  • Munitions must be analyzed to identify any risks for quality assurance in development and mass production. Risk identification for parts, compositions, and systems is carried out through failure mode effects analysis (FMEA) as one of the most reliable methods. FMEA is a design tool for the failure mode of risk identification and relies on the RPN (risk priority number). FMEA has disadvantages because its severity, occurrence, and detectability are rated at the same level. Fuzzy FMEA applies fuzzy logic to compensate for the shortcomings of FMEA. The fuzzy logic of Fuzzy FMEA is to express uncertainties about the phenomenon and provides quantitative values. In this paper, Fuzzy FMEA is applied to the failure mode of a rotorcraft landing system. The Fuzzy rule and membership functions were conducted in the Fuzzy model to study the RPN in the failure mode of a landing system. This method was selected to demonstrate crisp values of severity, occurrence, and detectability. In addition, the RPN was obtained. The results of Fuzzy FMEA for the landing system were analyzed for the RPN and ranking by fuzzy logic. Finally, Fuzzy FMEA confirmed that it could use the data in quality assurance activities for rotorcraft.

Modelling of Large Triaxial Test with Rockfill Materials by Distinct Element Method (개별요소법에 의한 락필재료의 대형삼축압축시험 모델링)

  • Jeon, Je-Sung;Kim, Ki-Young;Shin, Dong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.111-120
    • /
    • 2006
  • In this research, numerical simulations by PFC considering discrete element method are conducted to predict experimental results of large triaxial compression test with rockfill material for dam construction. For generation of compacted assembly with specific grain size distribution and initial material porosity, the clump logic method and expansion of generated particles are adapted. To predict stress-stain behavior of large triaxial test, discrete particle modelling is applied with micro parameters which are chosen by calibration process. It is expected that distinct particle modelling method could be used as a useful tool to investigate micro and macro behavior associated with geotechnical problems and develop a numerical laboratory.

The Application of Fuzzy Logic to Assess the Performance of Participants and Components of Building Information Modeling

  • Wang, Bohan;Yang, Jin;Tan, Adrian;Tan, Fabian Hadipriono;Parke, Michael
    • Journal of Construction Engineering and Project Management
    • /
    • v.8 no.4
    • /
    • pp.1-24
    • /
    • 2018
  • In the last decade, the use of Building Information Modeling (BIM) as a new technology has been applied with traditional Computer-aided design implementations in an increasing number of architecture, engineering, and construction projects and applications. Its employment alongside construction management, can be a valuable tool in helping move these activities and projects forward in a more efficient and time-effective manner. The traditional stakeholders, i.e., Owner, A/E and the Contractor are involved in this BIM system that is used in almost every activity of construction projects, such as design, cost estimate and scheduling. This article extracts major features of the application of BIM from perspective of participating BIM components, along with the different phrases, and applies to them a logistic analysis using a fuzzy performance tree, quantifying these phrases to judge the effectiveness of the BIM techniques employed. That is to say, these fuzzy performance trees with fuzzy logic concepts can properly translate the linguistic rating into numeric expressions, and are thus employed in evaluating the influence of BIM applications as a mathematical process. The rotational fuzzy models are used to represent the membership functions of the performance values and their corresponding weights. Illustrations of the use of this fuzzy BIM performance tree are presented in the study for the uninitiated users. The results of these processes are an evaluation of BIM project performance as highly positive. The quantification of the performance ratings for the individual factors is a significant contributor to this assessment, capable of parsing vernacular language into numerical data for a more accurate and precise use in performance analysis. It is hoped that fuzzy performance trees and fuzzy set analysis can be used as a tool for the quality and risk analysis for other construction techniques in the future. Baldwin's rotational models are used to represent the membership functions of the fuzzy sets. Three scenarios are presented using fuzzy MEAN, AND and OR gates from the lowest to intermediate levels of the tree, and fuzzy SUM gate to relate the intermediate level to the top component of the tree, i.e., BIM application final performance. The use of fuzzy MEAN for lower levels and fuzzy SUM gates to reach the top level suggests the most realistic and accurate results. The methodology (fuzzy performance tree) described in this paper is appropriate to implement in today's construction industry when limited objective data is presented and it is heavily relied on experts' subjective judgment.

Development of Hardware Design Process Enhancement Tool for Flight Control Computer using Modeling and Simulation (M&S 기반의 비행조종컴퓨터 하드웨어 설계 프로세스 개선을 위한 툴 개발)

  • Kwon, Jong-Kwang;Ahn, Jong-Min;Ko, Joon-Soo;Seung, Dae-Beom;Kim, Whan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.1036-1042
    • /
    • 2007
  • It is rather difficult to improve flight control computer(FLCC) hardware(H/W) development schedule due to lack of commercial off-the-self(COTS) tools or target specific tools. Thus, it is suggested to develop an enhanced process utilizing modeling, simulation and virtual reality tools. This paper presents H/W design process enhancement tool(PET) for FLCC design requirements such as FLCC input/output(I/O) signal flow, I/O fault detection, failure management algorithm, circuit logic, PCB assembly configuration and installation utilizing simulation and visualization in virtual space. New tool will provide simulation capability of various FLCC design configuration including shop replaceable unit(SRU) level assembly/dis-assembly utilizing open flight format 3-D modeling data.

The Study of Assessment Tool as an Outcomes Achievement : Part 3 Undergraduate Thesis (프로그램학습성과 달성을 위한 평가도구 연구 : Part 3 졸업논문)

  • Kim, Myoung-Lang;Kim, Dong-Hwan;Chung, Jin-Taek;Kim, Bok-Ki;Yoon, Woo-Young
    • Journal of Engineering Education Research
    • /
    • v.10 no.1
    • /
    • pp.97-108
    • /
    • 2007
  • Undergraduate thesis contains overall results that students has acquired to express their ability during four university years. Undergraduate thesis includes an ability to apply knowledge of engineering, communicate engineering logic and thinking effectively, and use the techniques, skills for engineering practice. In terms of an assessment tool for program outcomes, undergraduate thesis provides the results of the student with authentic, reflective, interactive and individuals features. Also undergraduate thesis provides an opportunity of improvement about curriculum and engineering program. To apply the excellency of undergraduate thesis, the principle of undergraduate thesis should be understood well and reflected the real state of engineering education. The basic concept of undergraduate thesis as a assessment tool of engineering program outcomes has been introduced. The rubrics for measuring of a specific outcome was also suggested.

Interoperability Analysis for BIM software Based on User-defined Properties (BIM 소프트웨어 호환성 분석 : 사용자정의 속성정보인 GBS를 중심으로)

  • Kang, Seunghee;Ha, Jiwon;Ju, Taehwan;Jung, Youngsoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.2
    • /
    • pp.99-109
    • /
    • 2016
  • The utilization of Building Information Modeling (BIM) has increased in order to enhance the integration of information for management and resources throughout the construction projects. Therefore, various BIM softwares have been used under open BIM environments in the building and plant construction industry. However, it has obstructive factors due to the lack of interoperability. In order to address this problem, this study conducted an interoperability analysis of BIM software focused on user-defined properties for enhanced function and efficiency. Result of the analysis shows that authoring tools have more interoperability problems than viewer tools and simulation tools have. In terms of interoperability, user-defined properties outperforms than those of system basic properties and logic data. Therefore, it was found that functional improvement and workload minimization in BIM can be attained by applying the GBS (an user-defined property for automatic manipulation of BIM proposed by Jung et al. 2013) that enables automatic link between geometric data and non-geometric data. In this respect, this study concludes that the application of user-defined property (e.g. GBS) can be an effective method for information integration throughout construction projects.

The Development of the Application Program Generator based on Meta-Data (메타데이터를 이용한 응용프로그램 생성기의 개발)

  • Kim Chi-Su
    • The KIPS Transactions:PartD
    • /
    • v.13D no.1 s.104
    • /
    • pp.97-102
    • /
    • 2006
  • Generally, a software development process is composed with requirements analysis, design, coding, test and maintenance. However, some changes of the design step are difficult to complicate the next step in the development process. It always causes the disagreement between design and implementation step. In this paper, we have developed a tool which can generate an application program. The tool can reduce the disagreement between system design and implementation and recognize the business logic to develop the software rapidly and flexibly In addition, we proposed a non-program-based application program system approach was proposed, In. We can generate and modify an application program with this method which can edit the meta data of a system design by the dynamic method for the execution time.

Structural Design of Data Packer for Error Reduction (오류 감소를 위한 구조적 데이터 패커 설계)

  • Ko, Young-Oog;Kim, Hyeoung-Kyun;Kim, Hwan-Yong
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.2
    • /
    • pp.46-53
    • /
    • 1999
  • In this paper, a packer is proposed for removing the bottle-neck effect and processing easy signal using a new algorithm with the operation frequency of 54MHz in processing HDTV video signal. To verify the performance of the proposed packer, DCT coefficient encoding block with ROM table using a combinational logic is designed and its output data are used as the input data of the packer.The proposed circuits, in this paper, are designed by using VHDL code and its modeling and simulation are performed with SYNOPSYS tool in $0.65{\mu}m$ design rule.

  • PDF

Low-Power Frequency Offset Synchronization Block Design and Implementation using Pipeline CORDIC (Pipeline CORDIC을 이용한 저전력 주파수 옵셋 동기화기 설계 및 구현)

  • Ha, Jun-Hyung;Jung, Yo-Sung;Cho, Yong-Hoon;Jang, Young-Beom
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.49-56
    • /
    • 2010
  • In this paper, a low-power frequency offset synchronization structure using CORDIC algorithm is proposed. Main blocks of frequency offset synchronization are estimation and compensation block. In the proposed frequency offset estimation block, implementation area is reduced by using sequential CORDIC, and throughput is accelerated by using 2 step CORDIC. In the proposed frequency offset compensation block, pipeline CORDIC is utilized for area reduction and high speed processing. Through MatLab simulation, function for proposed structure is verified. Proposed frequency offset synchronization structure is implemented by Verilog-HDL coding and implementation area is estimated by Synopsys logic synthesis tool.