• Title/Summary/Keyword: logic simulation

Search Result 1,445, Processing Time 0.029 seconds

Defining the Tumour and Gross Tumor Volume using PET/CT : Simulation using Moving Phantom (양전자단층촬영장치에서 호흡의 영향에 따른 종양의 변화 분석)

  • Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.935-942
    • /
    • 2021
  • Involuntary movement of internal organs by respiration is a factor that greatly affects the results of radiotherapy and diagnosis. In this study, a moving phantom was fabricated to simulate the movement of an organ or a tumor according to respiration, and 18F-FDG PET/CT scan images were acquired under various respiratory simulating conditions to analyze the movement range of the tumor movement by respiration, the level of artifacts according to the size of the tumor and the maximum standardized uptake value (SUVmax). Based on Windows CE 6.0 as the operating system, using electric actuator, electric actuator positioning driver, and programmable logic controller (PLC), the position and speed control module was operated normally at a moving distance of 0-5 cm and 10, 15, and 20 reciprocations. For sphere diameters of 10, 13, 17, 22, 28, and 37 mm at a delay time of 100 minutes, 80.4%, 99.5%, 107.9%, 113.1%, 128.0%, and 124.8%, respectively were measured. When the moving distance was the same, the difference according to the respiratory rate was insignificant. When the number of breaths is 20 and the moving distance is 1 cm, 2 cm, 3 cm, and 5 cm, as the moving distance increased at the sphere diameters of 10, 13, 17, 22, 28, and 37 mm, the ability to distinguish images from smaller spheres deteriorated. When the moving distance is 5 cm compared to the still image, the maximum values of the standard intake coefficient were 18.0%, 23.7%, 29.3%, 38.4%, 49.0%, and 67.4% for sphere diameters of 10, 13, 17, 22, 28, and 37 mm, respectively.

Active VM Consolidation for Cloud Data Centers under Energy Saving Approach

  • Saxena, Shailesh;Khan, Mohammad Zubair;Singh, Ravendra;Noorwali, Abdulfattah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.345-353
    • /
    • 2021
  • Cloud computing represent a new era of computing that's forms through the combination of service-oriented architecture (SOA), Internet and grid computing with virtualization technology. Virtualization is a concept through which every cloud is enable to provide on-demand services to the users. Most IT service provider adopt cloud based services for their users to meet the high demand of computation, as it is most flexible, reliable and scalable technology. Energy based performance tradeoff become the main challenge in cloud computing, as its acceptance and popularity increases day by day. Cloud data centers required a huge amount of power supply to the virtualization of servers for maintain on- demand high computing. High power demand increase the energy cost of service providers as well as it also harm the environment through the emission of CO2. An optimization of cloud computing based on energy-performance tradeoff is required to obtain the balance between energy saving and QoS (quality of services) policies of cloud. A study about power usage of resources in cloud data centers based on workload assign to them, says that an idle server consume near about 50% of its peak utilization power [1]. Therefore, more number of underutilized servers in any cloud data center is responsible to reduce the energy performance tradeoff. To handle this issue, a lots of research proposed as energy efficient algorithms for minimize the consumption of energy and also maintain the SLA (service level agreement) at a satisfactory level. VM (virtual machine) consolidation is one such technique that ensured about the balance of energy based SLA. In the scope of this paper, we explore reinforcement with fuzzy logic (RFL) for VM consolidation to achieve energy based SLA. In this proposed RFL based active VM consolidation, the primary objective is to manage physical server (PS) nodes in order to avoid over-utilized and under-utilized, and to optimize the placement of VMs. A dynamic threshold (based on RFL) is proposed for over-utilized PS detection. For over-utilized PS, a VM selection policy based on fuzzy logic is proposed, which selects VM for migration to maintain the balance of SLA. Additionally, it incorporate VM placement policy through categorization of non-overutilized servers as- balanced, under-utilized and critical. CloudSim toolkit is used to simulate the proposed work on real-world work load traces of CoMon Project define by PlanetLab. Simulation results shows that the proposed policies is most energy efficient compared to others in terms of reduction in both electricity usage and SLA violation.

The Implementable Functions of the CoreNet of a Multi-Valued Single Neuron Network (단층 코어넷 다단입력 인공신경망회로의 함수에 관한 구현가능 연구)

  • Park, Jong Joon
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.593-602
    • /
    • 2014
  • One of the purposes of an artificial neural netowrk(ANNet) is to implement the largest number of functions as possible with the smallest number of nodes and layers. This paper presents a CoreNet which has a multi-leveled input value and a multi-leveled output value with a 2-layered ANNet, which is the basic structure of an ANNet. I have suggested an equation for calculating the capacity of the CoreNet, which has a p-leveled input and a q-leveled output, as $a_{p,q}={\frac{1}{2}}p(p-1)q^2-{\frac{1}{2}}(p-2)(3p-1)q+(p-1)(p-2)$. I've applied this CoreNet into the simulation model 1(5)-1(6), which has 5 levels of an input and 6 levels of an output with no hidden layers. The simulation result of this model gives, the maximum 219 convergences for the number of implementable functions using the cot(${\sqrt{x}}$) input leveling method. I have also shown that, the 27 functions are implementable by the calculation of weight values(w, ${\theta}$) with the multi-threshold lines in the weight space, which are diverged in the simulation results. Therefore the 246 functions are implementable in the 1(5)-1(6) model, and this coincides with the value from the above eqution $a_{5,6}(=246)$. I also show the implementable function numbering method in the weight space.

Regional Path Re-selection Period Determination Method for the Energy Efficient Network Management in Sensor Networks applied SEF (통계적 여과 기법이 적용된 센서 네트워크에서 에너지 효율적인 네트워크 관리를 위한 영역별 경로 재설정 주기 결정 기법)

  • Park, Hyuk;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.69-78
    • /
    • 2011
  • A large-scale sensor network usually operates in open and unattended environments, hence individual sensor node is vulnerable to various attacks. Therefore, malicious attackers can physically capture sensor nodes and inject false reports into the network easily through compromised nodes. These false reports are forwarded to the base station. The false report injection attack causes not only false alarms, but also the depletion of the restricted energy resources in a battery powered network. The statistical en-route filtering (SEF) mechanism was proposed to detect and drop false reports en route. In SEF, the choice of routing paths largely affect the energy consumption rate and the detecting power of the false report. To sustain the secure routing path, when and how to execute the path re-selection is greatly need by reason of the frequent network topology change and the nodes's limitations. In this paper, the regional path re-selection period determination method is proposed for efficient usage of the limited energy resource. A fuzzy logic system is exploited in order to dynamically determine the path re-selection period and compose the routing path. The simulation results show that up to 50% of the energy is saved by applying the proposed method.

Analysis and Calculation of Factors Influencing the Sortie Generation Rate (SGR) of Aircraft-carrying Naval Ships (함재기탑재 함정의 소티 생성률(Sortie Generation Rate) 영향인자 분석 및 산출 연구)

  • Sunah Jung;Heechang Yoon;Seungheon Oh;Jonghoon Woo;Sangwoo Bae;Dongi Park;Woongsub Lee;Jaehyuk Lee;Hyuk Lee;Junghoon Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.4
    • /
    • pp.267-277
    • /
    • 2024
  • The Sortie Generation Rate (SGR) is a critical performance indicator for carrier-based aircraft and is a key factor for the carrier design process. This study aims to analyze the factors that affect SGR and establish a representative Sortie Generation Process (SGP) along with simulation results to calculate SGR for a naval ship equipped to carry aircraft. Detailed SGR factors are identified from the perspectives of the aircraft, aviation personnel, and aircraft carrier during the flight preparation stage, and the SGP is established accordingly. As a representative, Korean Navy's CVX basic design is chosen for detailed analysis. The physical dimension and spots for the deck design with time and probabilistic data of SGP are considered to develop a queueing network model for SGR calculation. To consider the specific probabilistic features, the model was solved with discrete event simulation tools(SimPy and AnyLogic) where the results show great agreement. Such findings on SGR factors and calculation are expected to be incorporated in the future development of SGR calculation algorithms and also present guidelines for proper design of aircraft carrier based on concrete operation concept.

Efficient Symbol Detection Algorithm for Space-frequency OFDM Transmit Diversity Scheme (공간-주파수 OFDM 전송 다이버시티 기법을 위한 효율적인 심볼 검출 알고리즘)

  • Jung Yun ho;Kim Jae seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.283-289
    • /
    • 2005
  • In this paper, we propose two efficient symbol detection algorithms for space-frequency OFDM (SF-OFDM) transmit diversity scheme. When the number of sub-carriers in SF-OFBM scheme is small, the interference between adjacent sub-carriers may be generated. The proposed algorithms eliminate this interference in a parallel or sequential manlier and achieve a considerable performance improvement over the conventional detection algorithm. The bit error rate (BER) performance of the proposed detection algorithms is evaluated by the simulation. In the case of 2 transmit and 2 receive antennas, at $BER=10^{-4}$ the proposed algorithms achieve the gain improvement of about 3 dB. The symbol detectors with the proposed algorithms are designed in a hardware description language and synthesized to gate-level circuits with the $0.18{\mu}m$ 1.8V CMOS standard cell library. With the division-free architecture, the proposed SF-OFDM-PIC and SF-OFDM-SIC symbol detectors can be implemented using 140k and 129k logic gates, respectively.

IQ Unbalance Compensation for OPDM Based Wireless LANs (무선랜 시스템에서의 IQ 부정합 보상 기법 연구)

  • Kim, Ji-Ho;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.905-912
    • /
    • 2007
  • This paper proposes an efficient estimation and compensation scheme of IQ imbalance for OFDM-based WLAN systems in the presence of symbol timing error. Since the conventional scheme assumes perfect time synchronization, the criterion of the scheme used to derive the estimation of IQ imbalance is inadequate in the presence of the symbol timing error and the system performance is seriously degraded. New criterion and compensation scheme considering the effect of symbol timing error are proposed. With the proposed scheme, the IQ imbalance can be almost perfectly eliminated in the presence of symbol timing error. The bit error rate performance of the proposed scheme is evaluated by the simulation. In case of 54 Mbps transmission mode in IEEE 802.11a system, the proposed scheme achieves a SNR gain of 4.3dB at $BER=2{\cdot}10^{-3}$. The proposed compensation algorithm of IQ imbalance is implemented using Verilog HDL and verified. The proposed IQ imbalance compensator is composed of 74K logic gates and 6K bits memory from the synthesis result using 0.18um CMOS technology.

Adaptive QoS Policy Control using Fuzzy Controller in Policy-based Network Management (정책기반 네트워크 관리 환경에서 퍼지 컨트롤러를 이용한 적응적 QoS 정책 제어)

  • Lim, Hyung-J.;Jeong, Jong-Pil;Lee, Jee-Hyoung;Choo, Hyun-Seung;Chung, Tai-M.
    • The KIPS Transactions:PartC
    • /
    • v.11C no.4
    • /
    • pp.429-438
    • /
    • 2004
  • This Paper Presents the control structure for incoming traffic from arbitrary node to Provide admission control in policy-based W network management structure using fuzzy logic control approach. The proposed control structure uses scheme for deciding network resource allocation depending on requirements predefined-policies and network states. The proposed scheme enhances policy adapting methods of existing binary methods, and can use resource of network more effectively to provide adaptive admission control, according to the unpredictable network states for predefined QoS policies. Simulation results show that the proposed controller improves the ratio of packet rejection up to 26%, because it Performs the soft adaption based on the network states instead of accept/reject action in conventional CAC(Connection Admission Controller).

VLSI Design for Folded Wavelet Transform Processor using Multiple Constant Multiplication (MCM과 폴딩 방식을 적용한 웨이블릿 변환 장치의 VLSI 설계)

  • Kim, Ji-Won;Son, Chang-Hoon;Kim, Song-Ju;Lee, Bae-Ho;Kim, Young-Min
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.81-86
    • /
    • 2012
  • This paper presents a VLSI design for lifting-based discrete wavelet transform (DWT) 9/7 filter using multiplierless multiple constant multiplication (MCM) architecture. This proposed design is based on the lifting scheme using pattern search for folded architecture. Shift-add operation is adopted to optimize the multiplication process. The conventional serial operations of the lifting data flow can be optimized into parallel ones by employing paralleling and pipelining techniques. This optimized design has simple hardware architecture and requires less computation without performance degradation. Furthermore, hardware utilization reaches 100%, and the number of registers required is significantly reduced. To compare our work with previous methods, we implemented the architecture using Verilog HDL. We also executed simulation based on the logic synthesis using $0.18{\mu}m$ CMOS standard cells. The proposed architecture shows hardware reduction of up to 60.1% and 44.1% respectively at 200 MHz clock compared to previous works. This implementation results indicate that the proposed design performs efficiently in hardware cost, area, and power consumption.

A Study on the Detection Technique of the Flame and Series arc by Poor Contact (접촉 불량에 의한 불꽃 및 직렬아크의 검출 기법에 관한 연구)

  • Woo, Kim Hyun;Hyun, Baek Dong
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.24-30
    • /
    • 2012
  • This study is on the method of the detection for flame and series arc which can be happened at poor contact point added a vibration in part of contact point of low voltage line. In general, the causes of electric fire are over current, short circuit, poor contact, ect. The over-current or short circuit among those causes is detected by measuring a instant current value, but poor contact is difficult to detect by measuring a excessive value of the voltage and current and a distortion of waveforms. And therefore, in this paper, it is studied on the optimal technique of the arc judgement using fuzzy logic and MDET (Multi Dimension Estimation Technique). And it carries out the simulation for arc detection and the experiment for controller and load test. In result, the controller and detection algoristhm, is classified with normal wave and abnormal arc wave without relation with each loads and so the controller can detect a series arc successfully.