• Title/Summary/Keyword: log model

Search Result 1,236, Processing Time 0.027 seconds

Bayesian Analysis in Generalized Log-Gamma Censored Regression Model

  • Younshik chung;Yoomi Kang
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.733-742
    • /
    • 1998
  • For industrial and medical lifetime data, the generalized log-gamma regression model is considered. Then the Bayesian analysis for the generalized log-gamma regression with censored data are explained and following the data augmentation (Tanner and Wang; 1987), the censored data is replaced by simulated data. To overcome the complicated Bayesian computation, Makov Chain Monte Carlo (MCMC) method is employed. Then some modified algorithms are proposed to implement MCMC. Finally, one example is presented.

  • PDF

Suppression and Collapsibility for Log-linear Models

  • Sun, Hong-Chong
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.519-527
    • /
    • 2004
  • Relationship between the partial likelihood ratio statistics for logisitic models and the partial goodness-of-fit statistics for corresponding log-linear models is discussed. This paper shows how definitions of suppression in logistic model can be adapted for log-linear model and how they are related to confounding in terms of collapsibility for categorical data. Several $2{times}2{times}2$ contingency tables are illustrated.

Log-density Ratio with Two Predictors in a Logistic Regression Model (로지스틱 회귀모형에서 이변량 정규분포에 근거한 로그-밀도비)

  • Kahng, Myung Wook;Yoon, Jae Eun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.141-149
    • /
    • 2013
  • We present methods for studying the log-density ratio that enables the selection of the predictors and the form to be included in the logistic regression model. Under bivariate normal distributional assumptions, we investigate the form of the log-density ratio as a function of two predictors. If two covariance matrices are equal, then the crossproduct and quadratic terms are not needed. If the variables are uncorrelated, we do not need the crossproduct terms, but we still need the linear and quadratic terms. We also explore other conditions in which the crossproduct and quadratic terms are not needed in the logistic regression model.

Empirical Comparisons of Disparity Measures for Three Dimensional Log-Linear Models

  • Park, Y.S.;Hong, C.S.;Jeong, D.B.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.543-557
    • /
    • 2006
  • This paper is concerned with the applicability of the chi-square approximation to the six disparity statistics: the Pearson chi-square, the generalized likelihood ratio, the power divergence, the blended weight chi-square, the blended weight Hellinger distance, and the negative exponential disparity statistic. Three dimensional contingency tables of small and moderate sample sizes are generated to be fitted to all possible hierarchical log-linear models: the completely independent model, the conditionally independent model, the partial association models, and the model with one variable independent of the other two. For models with direct solutions of expected cell counts, point estimates and confidence intervals of the 90 and 95 percentage points of six statistics are explored. For model without direct solutions, the empirical significant levels and the empirical powers of six statistics to test the significance of the three factor interaction are computed and compared.

  • PDF

Cox proportional hazard model with L1 penalty

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.613-618
    • /
    • 2011
  • The proposed method is based on a penalized log partial likelihood of Cox proportional hazard model with L1-penalty. We use the iteratively reweighted least squares procedure to solve L1 penalized log partial likelihood function of Cox proportional hazard model. It provide the ecient computation including variable selection and leads to the generalized cross validation function for the model selection. Experimental results are then presented to indicate the performance of the proposed procedure.

Kinetic Behavior of Escherichia coli on Various Cheeses under Constant and Dynamic Temperature

  • Kim, K.;Lee, H.;Gwak, E.;Yoon, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.1013-1018
    • /
    • 2014
  • In this study, we developed kinetic models to predict the growth of pathogenic Escherichia coli on cheeses during storage at constant and changing temperatures. A five-strain mixture of pathogenic E. coli was inoculated onto natural cheeses (Brie and Camembert) and processed cheeses (sliced Mozzarella and sliced Cheddar) at 3 to 4 log CFU/g. The inoculated cheeses were stored at 4, 10, 15, 25, and $30^{\circ}C$ for 1 to 320 h, with a different storage time being used for each temperature. Total bacteria and E. coli cells were enumerated on tryptic soy agar and MacConkey sorbitol agar, respectively. E. coli growth data were fitted to the Baranyi model to calculate the maximum specific growth rate (${\mu}_{max}$; log CFU/g/h), lag phase duration (LPD; h), lower asymptote (log CFU/g), and upper asymptote (log CFU/g). The kinetic parameters were then analyzed as a function of storage temperature, using the square root model, polynomial equation, and linear equation. A dynamic model was also developed for varying temperature. The model performance was evaluated against observed data, and the root mean square error (RMSE) was calculated. At $4^{\circ}C$, E. coli cell growth was not observed on any cheese. However, E. coli growth was observed at $10{\circ}C$ to $30^{\circ}C$C with a ${\mu}_{max}$ of 0.01 to 1.03 log CFU/g/h, depending on the cheese. The ${\mu}_{max}$ values increased as temperature increased, while LPD values decreased, and ${\mu}_{max}$ and LPD values were different among the four types of cheese. The developed models showed adequate performance (RMSE = 0.176-0.337), indicating that these models should be useful for describing the growth kinetics of E. coli on various cheeses.

Early Prediction Model of Student Performance Based on Deep Neural Network Using Massive LMS Log Data (대용량 LMS 로그 데이터를 이용한 심층신경망 기반 대학생 학업성취 조기예측 모델)

  • Moon, Kibum;Kim, Jinwon;Lee, Jinsook
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.1-10
    • /
    • 2021
  • Log data accumulated in the Learning Management System (LMS) provide high-quality information for the learning process of students. Until now, various studies have been conducted to predict students' academic achievement using LMS log data. However, previous studies were based on relatively small sample sizes of students and courses, limiting the possibility of generalization. This study developed and validated a deep neural network model for the early prediction of academic achievement of college students using massive LMS log data. To this end, we used 78,466,385 cases of LMS log data and 165,846 cases of grade data. The proposed model predicted the excellent-grade students with a high level of accuracy from the beginning of the semester. Meanwhile, the prediction accuracy for the moderate and underachieving groups was relatively low, but the accuracy improved as the time points of the prediction were delayed. This study is meaningful in that we developed an early prediction model based on a deep neural network with sufficient accuracy for practical utilization by only using LMS log data.

Analysis of the relationship between soda-lime glass composition and viscosity calculated by Lakatos model (Lakatos 모델로 계산한 소다석회유리 점도와 조성과의 관계 분석)

  • Kang, Seung Min;Kim, Chang-sam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.6
    • /
    • pp.246-250
    • /
    • 2022
  • An estimation method of glass viscosity using Lakatos model is one of the best way to calculate the viscosity of soda-lime glass. The glass viscosity is obtained by inputting a glass composition consisting of SiO2, Al2O3, Na2O, K2O, CaO and MgO to the Lakatos model. A series of composition of glass bottles was obtained once a month for 10 months from a soda-lime glass bottle fabrication line and isokom temperatures at the viscosity of log η = 3, 6.6, 10 and 12.3 were calculated. It was found that the isokom temperature at log η = 3 and log η = 6.6 was closely related to the value of (Si+Al)/O and 1/Na, respectively.

Classification of Seismic Stations Based on the Simultaneous Inversion Result of the Ground-motion Model Parameters (지진동모델 파라미터 동시역산을 이용한 지진관측소 분류)

  • Yun, Kwan-Hee;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.183-190
    • /
    • 2007
  • The site effects of seismic stations were evaluated by conducting a simultaneous inversion of the stochastic point-source ground-motion model (STGM model; Boore, 2003) parameters based on the accumulated dataset of horizontal shear-wave Fourier spectra. A model parameter $K_0$ and frequency-dependent site amplification function A(f) were used to express the site effects. Once after a H/V ratio of the Fourier spectra was used as an initial estimate of A(f) for the inversion, the final A(f) which is considered to be the result of combined effect of the crustal amplification and loca lsite effects was calculated by averaging the log residuals at the site from the inversion and adding the mean log residual to the H/V ratio. The seismic stations were classified into five classes according to $logA_{1-10}^{max}$(f), the maximum level of the site amplification function in the range of 1 Hz < f < 10 Hz, i.e., A: $logA_{1-10}^{max}$(f) < 0.2, B: 0.2 $\leq$ $logA_{1-10}^{max}$(f) < 0.4, C: 0.4 $\leq$ $logA_{1-10}^{max}$(f) < 0.6, D: 0.6 $\leq$ $logA_{1-10}^{max}$(f) < 0.8, E: 0.8 $\leq$ $logA_{1-10}^{max}$(f). Implication of the classified result was supported by observing a shift of the dominant frequency of average A(f) for each classified stations as the class changes. Change of site classes after moving seismic stations to a better site condition was successfully described by the result of the station classification. In addition, the observed PGA (Peak Ground Acceleration)-values for two recent moderate earthquakes were well classified according to the proposed station classes.

An Application of the Clustering Threshold Gradient Descent Regularization Method for Selecting Genes in Predicting the Survival Time of Lung Carcinomas

  • Lee, Seung-Yeoun;Kim, Young-Chul
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.95-101
    • /
    • 2007
  • In this paper, we consider the variable selection methods in the Cox model when a large number of gene expression levels are involved with survival time. Deciding which genes are associated with survival time has been a challenging problem because of the large number of genes and relatively small sample size (n<