• Title/Summary/Keyword: location-routing problem

Search Result 81, Processing Time 0.018 seconds

Location-Routing Problem for Reconnaissance Surveillance Missions of the Maritime Manned-Unmanned Surface Vehicles (해양 유·무인 수상함정의 감시정찰 임무를 위한 위치-경로 문제)

  • Jinho Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.238-245
    • /
    • 2023
  • As technologies have been more quickly developed in this 4th Industry Revolution era, their application to defense industry has been also growing. With these much advanced technologies, we attempt to use Manned-Unmanned Teaming systems in various military operations. In this study, we consider the Location-Routing Problem for reconnaissance surveillance missions of the maritime manned-unmanned surface vehicles. As a solution technique, the two-phase method is presented. In the first location phase, the p-median problem is solved to determine which nodes are used as the seeds for the manned vehicles using Lagrangian relaxation with the subgradient method. In the second routing phase, using the results obtained from the location phase, the Vehicle Routing Problems are solved to determine the search routes of the unmanned vehicles by applying the Location Based Heuristic. For three network data sets, computational experiments are conducted to show the performance of the proposed two-phase method.

Solving the Location Problem of Charging Station with Electric Vehicle Routing Problem (전기차량경로문제의 충전소 위치선정문제의 해법)

  • Gitae Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.217-224
    • /
    • 2022
  • Due to the issue of the sustainability in transportation area, the number of electric vehicles has significantly increased. Most automakers have decided or planned to manufacture the electric vehicles rather than carbon fueled vehicles. However, there are still some problems to figure out for the electric vehicles such as long charging time, driving ranges, supply of charging stations. Since the speed of growing the number of electric vehicles is faster than that of the number of charging stations, there are lack of supplies of charging stations for electric vehicles and imbalances of the location of the charging stations. Thus, the location problem of charging stations is one of important issues for the electric vehicles. Studies have conducted to find the optimal locations for the charging stations. Most studies have formulated the problem with deterministic or hierarchical models. In this paper, we have investigated the fluctuations of locations and the capacity of charging stations. We proposed a mathematical model for the location problem of charging stations with the vehicle routing problem. Numerical examples provide the strategy for the location routing problems of the electric vehicles.

A Hybrid Genetic Algorithm for the Location-Routing Problem with Simultaneous Pickup and Delivery

  • Karaoglan, Ismail;Altiparmak, Fulya
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.24-33
    • /
    • 2011
  • In this paper, we consider the Location-Routing Problem with simultaneous pickup and delivery (LRPSPD) which is a general case of the location-routing problem. The LRPSPD is defined as finding locations of the depots and designing vehicle routes in such a way that pickup and delivery demands of each customer must be performed with same vehicle and the overall cost is minimized. Since the LRPSPD is an NP-hard problem, we propose a hybrid heuristic approach based on genetic algorithms (GA) and simulated annealing (SA) to solve the problem. To evaluate the performance of the proposed approach, we conduct an experimental study and compare its results with those obtained by a branch-and-cut algorithm on a set of instances derived from the literature. Computational results indicate that the proposed hybrid algorithm is able to find optimal or very good quality solutions in a reasonable computation time.

Optimization for Vehicle Routing Problem with Locations of Parcel Lockers (물품보관소 위치를 고려한 차량경로문제 최적화)

  • Gitae Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.134-141
    • /
    • 2022
  • Transportation in urban area has been getting hard to fulfill the demand on time. There are various uncertainties and obstacles related with road conditions, traffic congestions, and accidents to interrupt the on-time deliveries. With this situation, the last mile logistics has been a keen issue for researchers and practitioners to find the best strategy of the problem. A way to resolve the problem is to use parcel lockers. Parcel locker is a storage that customers can pick up their products. Transportation vehicles deliver the products to parcel lockers instead of all customer sites. Using the parcel lockers, the total delivery costs can be reduced. However, the inconvenience of customer has to increase. Thus, we have to optimal solution to balance between the total delivery costs and customers' inconvenience. This paper formulates a mathematical model to find the optimal solution for the vehicle routing problem and the location problem of parcel lockers. Experimental results provide the viability to find optimal strategy for the routing problem as well as the location problem.

Endosymbiotic Evolutionary Algorithm for the Combined Location Routing and Inventory Problem with Budget Constrained (초기투자비 제약을 고려한 입지..경로..재고문제의 내공생진화 알고리듬 해법)

  • Song, Seok-Hyun;Lee, Sang-Heon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • This paper presents a new method that can solve the integrated problem of combined location routing and inventory problem (CLRIP) efficiently. The CLRIP is used to establish facilities from several candidate depots, to find the optimal set of vehicle routes, and to determine the inventory policy in order to minimize the total system cost. We propose a mathematical model for the CLRIP with budget constrained. Because this model is a nonpolynomial (NP) problem, we propose a endosymbiotic evolutionary algorithm (EEA) which is a kind of symbiotic evolutionary algorithm (SEA). The heuristic method is used to obtaining the initial solutions for the EEA. The experimental results show that EEA perform very well compared to the existing heuristic methods with considering inventory control decisions.

GPS Jamming Resilient Location-based Routing for Unmanned Ground Vehicle Networks (무인 지상 차량 네트워크에서 GPS 재밍에 강인한 위치기반 라우팅)

  • Lee, Jinwoo;Jung, Woo-Sung;Kim, Yong-joo;Ko, Young-Bae;Ham, Jae-Hyun;Choi, Jeung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.432-440
    • /
    • 2015
  • UGVs(Unmanned Ground Vehicles) are robots that can substitute humans in reconnaissance operations of potentially dangerous and contaminated sites. Currently, there have been active research on utilizing UGVs in military environments. Much resrach has been focused on exploiting the weakness of topology-based routing and instead utilize location-based routing for the networking of UGVs. It is generally assumed that location-based routing methods can fully utilize the location information gained from GPS. However, this may not be possible in tactical environments due to enemy GPS jamming and LOS(Line of Sight) limitations. To solve this problem, we propose a location-based routing scheme utilizing low control message that can calibrate the location information using GPS information as well as location of neighboring UGV, movement direct and speed information. Also utilizing topology-based routing scheme to solve incorrect location information in GPS jamming region.

A Combined Location and Vehicle Routing Problem (입지선정 및 차량경로문제)

  • 강인선
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.37
    • /
    • pp.263-269
    • /
    • 1996
  • The cost and customer service level of a logistics system depend primarily on the system design of the physical supply system and physical distribution system. The study presents the mathematical model and a huristic solution method of a combined location - vehicle routing problem(LVRP). In LVRP the objective is to determine the number and location of the distribution centers, the allocation of customers to distribution centers, and the vehicle delivery routes, so as to minimize the logistics total cost and satisfy the customer.

  • PDF

A Location-based Real-time Re-routing Heuristic to Solve the VRPSPD (VRPSPD 해결을 위한 위치기반의 실시간 재경로 탐색 휴리스틱)

  • Cha, Sang-Jin;Lee, Kee-Sung;Yu, Young-Hoon;Jo, Geun-Sik
    • Spatial Information Research
    • /
    • v.18 no.3
    • /
    • pp.63-72
    • /
    • 2010
  • The vehicle routing problem with simultaneous pick-up and delivery (VRPSPD) is a variant of the vehicle routing problem (VRP) that customers require simultaneously a pick-up and delivery service. The main objective of VRPSPD is to minimize a cost of routes satisfying many constraints. Traditional VRPSPD have been dealt with a static environment. The static environment means that a routing data and plan cannot be changed. For example, it is difficult to change a vehicle's routing plan so that a vehicle serves the pick-up demands of new customers during the delivery service. Therefore, traditional approach is not suitable for dynamic environments. To solve this problem, we propose a novel approach for finding efficient routes using a real-time re-routing heuristics based on the Location Based Service (LBS). Our re-routing heuristics can generate a new route for vehicle that satisfies a new customer's demand considering the current geographic location of a vehicle. Experimental results show that our methodology can reduce the traveling cost of vehicles comparing with other previous methods.

Parcel Locker Locations and Dynamic Vehicle Routing Problem with Traffic Congestion (교통 체증을 고려한 물품 보관함 위치 및 동적 차량 경로 문제)

  • Chaehyun Kim;Gitae Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.168-175
    • /
    • 2024
  • Due to the complexity of urban area, the city vehicle routing problem has been a difficult problem. The problem has involved factors such as parking availability, road conditions, and traffic congestion, all of which increase transportation costs and delivery times. To resolve this problem, one effective solution can be the use of parcel lockers located near customer sites, where products are stored for customers to pick up. When a vehicle delivers products to a designated parcel locker, customers in the vicinity must pick up their products from that locker. Recently, identifying optimal locations for these parcel lockers has become an important research issue. This paper addresses the parcel locker location problem within the context of urban traffic congestion. By considering dynamic environmental factors, we propose a Markov decision process model to tackle the city vehicle routing problem. To ensure more real situations, we have used optimal paths for distances between two nodes. Numerical results demonstrate the viability of our model and solution strategy.

A Location-Routing Problem for Logistics Network Integrating Forward and Reverse Flow (역물류를 고려한 통합물류망에서의 입지:경로문제)

  • Na, Ho-Young;Lee, Sang-Heon
    • IE interfaces
    • /
    • v.22 no.2
    • /
    • pp.153-164
    • /
    • 2009
  • An effective management for reverse flows of products such as reuse, repair and disposal, has become an important issue for every aspect of business. In this paper, we study the Location-Routing Problem (LRP) in the multi-stage closed-loop supply chain network. The closed-loop supply chain in this study integrated both forward and reverse flows. In forward flow, a factory, Distribution Center (DC) and retailer are considered as usual. Additionally in reverse flow, we consider the Central Returns collection Center (CRC) and disposal facility. We propose a mixed integer programming model for the design of closed-loop supply chain integrating both forward and reverse flows. Since the LRP belongs to an NP-hard problem, we suggest a heuristic algorithm based on genetic algorithm. For some test problems, we found the optimal locations and routes by changing the numbers of retailers and facility candidates. Furthermore, we compare the efficiencies between open-loop and closed-loop supply chain networks. The results show that the closed-loop design is better than the open one in respect to the total routing distance and cost. This phenomenon enlarges the cut down effect on cost as an experimental space become larger.