• 제목/요약/키워드: location-based learning

검색결과 423건 처리시간 0.022초

U-Learning을 위한 위치 기반 서비스로서의 상황 인식 기술 (Context-Awareness Technology for Location Based-Service for Ubiquitous Learning)

  • 김혜진
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.4869-4874
    • /
    • 2011
  • 본 논문에서는 위치 기반 서비스로서의 U-Learning에 적용할 수 있는 구성 및 온톨리지 이론을 정의하였다. 또한 본 논문에서는 위치 기반 서비스로서의 U-Learning에 대한 확실한 비전을 제공하고자 하였다. 상황 인식을 적용한 전형적인 U-Learning을 소개하였으며, 핵심 아이디어 및 기술적 개념을 포함한 학습 환경 구조도 소개하였다. 고급 정보통신 기술의 원리를 적용하여, 위치 기반 서비스로서의 U-Learning을 위한 인공지능 기반 상황 인식 개념도 정리하였다. 본 논문에서 언급하는 위치 기반 서스비로서의 U-Learning 및 하위 개념들은 새로운 패러다임을 제공할 것이며, 학습 환경 구조에 포함된 하위 요소들도 모두 제안하였다.

Context-Awareness for Location Based-Service for Ubiquitous Learning with underlying Principles of Ontology, Constructivism, Artificial Intelligence

  • Gelogo, Yvette;Kim, Hye-jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제4권2호
    • /
    • pp.7-11
    • /
    • 2012
  • In this paper, we defined constructivism and ontology theory and associate it in ubiquitous learning. The typical ubiquitous learning involving the Context Aware Intelligent system was presented. Also the Architecture for learning environment including the key idea and technical concept is being presented in this paper. Guided with these principles and with the advancement of information and communication technology the context-awareness based on Artificial intelligence for Location based Service for ubiquitous Learning was conceptualized.

이동성 위치기반 증강현실(LBMS-AR)시스템 적용 현장체험 학습활동 프레임워크 개발 (Development of a Field-Experiential Learning Framework using Location Based Mobile-learning AR System)

  • 조재완;김은경
    • 한국IT서비스학회지
    • /
    • 제18권5호
    • /
    • pp.85-97
    • /
    • 2019
  • In this study, we developed the Field-Experiential Learning Framework Using the Location Based Mobil-learning System (LBMS) and it is mobile Augmented Reality (AR) for smart learning system which is advanced e-learning. AR is technology that seamlessly overlays computer graphics on the real world. LBMS-AR has become widely available because of mobile AR. Mobile AR is possible to get information from real world anytime, anywhere. Nowadays, there are various areas using AR such as entertainment, marketing, location-based AR. We analysed the result of survey and implemented the functions. Also, for survey about application's effectiveness, we have focus group interview (FGI). Then we demonstrated and explained the application to them. The result of survey about application's effectiveness shows that application have higher utilization in education area. One of the most promising areas is education. AR in education shows lifelike images to users for realism. It's a good way for improving concentration and attention. We utilize only a beacone for image-based AR without other sensor.

기계학습 기반의 실내 측위 성능 향상을 위한 학습 데이터 전처리 기법 (Learning data preprocessing technique for improving indoor positioning performance based on machine learning)

  • 김대진;황치곤;윤창표
    • 한국정보통신학회논문지
    • /
    • 제24권11호
    • /
    • pp.1528-1533
    • /
    • 2020
  • 최근 Wi-Fi 전파 지문을 이용한 실내 위치 인식 기술이 다양한 산업 분야 및 공공 서비스에서 적용되어 운영되고 있다. 기계학습 기술의 관심과 함께 단말 주변의 무선 신호 데이터를 사용한 기계학습 기반의 위치 인식 기술이 빠르게 발전하고 있다. 이때 기계학습에 필요한 무선 신호 데이터의 수집 과정에서 왜곡되거나 학습에 적합하지 않은 데이터가 포함되어 위치 인식의 정확도가 낮아지는 결과가 발생한다. 또한 특정 위치에서 수집된 데이터를 기반의 위치 인식을 수행하는 경우 학습에 포함되지 않은 주변 위치에서의 위치 인식에 문제가 발생한다. 본 논문에서는 수집된 학습 데이터의 전처리 과정을 통해 향상된 위치 인식 결과를 얻기 위한 학습 데이터 전처리 기법을 제안한다.

Analysis of Outdoor Positioning Results using Deep Learning Based LTE CSI-RS Data

  • Jeon, Juil;Ji, Myungin;Cho, Youngsu
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권3호
    • /
    • pp.169-173
    • /
    • 2020
  • Location-based services are used as core services in various fields. In particular, in the field of public services such as emergency rescue, accurate location estimation technology is very important. Recently, the technology of tracking the location of self-isolation subjects for COVID-19 has become a major issue. Therefore, location estimation technology using personal smart devices is being studied in various ways, and the most widely used method is to use GPS. Other representative methods are using Wi-Fi, Pedestrian Dead Reckoning (PDR), Bluetooth Low Energy (BLE) beacons, and LTE signals. In this paper, we introduced a positioning technology using deep learning based on LTE Channel State Information-Reference Signal (CSI-RS) data, and confirmed the possibility through an outdoor location estimation experiment using a commercial LTE signal.

스마트폰 기반 영어 어휘 상황학습 에이전트 개발 (Development of a English Vocabulary Context-Learning Agent based on Smartphone)

  • 김진일
    • 한국멀티미디어학회논문지
    • /
    • 제19권2호
    • /
    • pp.344-351
    • /
    • 2016
  • Recently, mobile application for english vocabulary learning is being developed actively. However, most mobile English vocabulary learning applications did not effectively connected with the technical advantages of mobile learning. Also,the study of mobile english vocabulary learning app are still insufficient. Therefore, this paper development a english vocabulary context-learning Agent that can practice context learning more reasonably using a location-based service, a character recognition technology and augmented reality technology based on smart phones. In order to evaluate the performance of the proposed agent, we have measured the precision and usability. As results of experiments, the precision of learning vocabulary is 89% and 'Match between system and the real world', 'User control and freedom', 'Recognition rather than recall', 'Aesthetic and minimalist design' appeared to be respectively 3.91, 3.80, 3.85, 4.01 in evaluation of usability. It were obtained significant results.

Enhancing Location Privacy through P2P Network and Caching in Anonymizer

  • Liu, Peiqian;Xie, Shangchen;Shen, Zihao;Wang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권5호
    • /
    • pp.1653-1670
    • /
    • 2022
  • The fear that location privacy may be compromised greatly hinders the development of location-based service. Accordingly, some schemes based on the distributed architecture in peer-to-peer network for location privacy protection are proposed. Most of them assume that mobile terminals are mutually trusted, but this does not conform to realistic scenes, and they cannot make requirements for the level of location privacy protection. Therefore, this paper proposes a scheme for location attribute-based security authentication and private sharing data group, so that they trust each other in peer-to-peer network and the trusted but curious mobile terminal cannot access the initiator's query request. A new identifier is designed to allow mobile terminals to customize the protection strength. In addition, the caching mechanism is introduced considering the cache capacity, and a cache replacement policy based on deep reinforcement learning is proposed to reduce communications with location-based service server for achieving location privacy protection. Experiments show the effectiveness and efficiency of the proposed scheme.

머신러닝을 활용한 어린이 스마트 횡단보도 최적입지 선정 - 창원시 사례를 중심으로 - (Machine Learning based Optimal Location Modeling for Children's Smart Pedestrian Crosswalk: A Case Study of Changwon-si)

  • 이수현;서용원;김세인;이재경;윤원주
    • 한국BIM학회 논문집
    • /
    • 제12권2호
    • /
    • pp.1-11
    • /
    • 2022
  • Road traffic accidents (RTAs) are the leading cause of accidental death among children. RTA reduction is becoming an increasingly important social issue among children. Municipalities aim to resolve this issue by introducing "Smart Pedestrian Crosswalks" that help prevent traffic accidents near children's facilities. Nonetheless such facilities tend to be installed in relatively limited number of areas, such as the school zone. In order for budget allocation to be efficient and policy effects maximized, optimal location selection based on machine learning is needed. In this paper, we employ machine learning models to select the optimal locations for smart pedestrian crosswalks to reduce the RTAs of children. This study develops an optimal location index using variable importance measures. By using k-means clustering method, the authors classified the crosswalks into three types after the optimal location selection. This study has broadened the scope of research in relation to smart crosswalks and traffic safety. Also, the study serves as a unique contribution by integrating policy design decisions based on public and open data.

Integrating Deep Learning with Web-Based Price Analysis to Support Cost Estimation

  • Musa, Musa Ayuba;Akanbi, Temitope
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.253-260
    • /
    • 2022
  • Existing web-based cost databases have proved invaluable for construction cost estimating. These databases have been utilized to compute approximate cost estimates using assembly rates, unit rates, and etc. These web-based databases can be used independently with traditional cost estimation methods (manual methods) or used to support BIM-based cost estimating platforms. However, these databases are rigid, costly, and require a lot of manual inputs to reflect recent trends in prices or prices relative to a construction project's location. To address this gap, this study integrated deep learning techniques with web-based price analysis to develop a database that incorporates a project's location cost estimating standards and current cost trends in generating a cost estimate. The proposed method was tested in a case study project in Lagos, Nigeria. A cost estimate was successfully generated. Comparison of the experimental results with results using current industry standards showed that the proposed method achieved a 98.16% accuracy. The results showed that the proposed method was successful in generating approximate cost estimates irrespective of project's location.

  • PDF

오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요 예측 가시화 웹 시스템 (Development of Data Visualized Web System for Virtual Power Forecasting based on Open Sources based Location Services using Deep Learning)

  • 이정휘;김동근
    • 한국정보통신학회논문지
    • /
    • 제25권8호
    • /
    • pp.1005-1012
    • /
    • 2021
  • 최근 웹에서 지도(Map)를 이용한 Location based Services 기반의 다양한 위치정보시스템 활용이 점점 확대되고 있으며 에너지 절약을 위한 대안으로 전력 수요 현황을 실시간으로 확인할 수 있는 모니터링 시스템의 필요성이 요구되고 있다. 본 연구에서는 딥러닝과 같은 기계학습을 이용하여 전력 수요 데이터의 특성을 분석하고 예측하는 모듈을 개발하여 지역 단위별 전력 에너지 사용 현황과 예측 추세를 실시간으로 확인할 수 있는 오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요예측 웹 시스템을 개발하였다. 특히 제안한 시스템은 LSTM 딥러닝 모델을 이용하여 지역적으로 전력 수요량과 예측 분석이 실시간으로 가능하고 분석된 정보를 가시화하여 제공한다. 향후 제안된 시스템을 통해 지역별 에너지의 수급 및 예측 현황을 확인하고 분석하는데 활용될 수 있을 뿐만 아니라 다른 산업 에너지에도 적용될 수 있을 것이다.