• Title/Summary/Keyword: location detection

Search Result 1,591, Processing Time 0.028 seconds

Detection of Gaze Direction for the Hearing-impaired in the Intelligent Space (지능형 공간에서 청각장애인의 시선 방향 검출)

  • Oh, Young-Joon;Hong, Kwang-Jin;Kim, Jong-In;Jung, Kee-Chul
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.333-340
    • /
    • 2011
  • The Human-Computer Interaction(HCI) is a study of the method for interaction between human and computers that merges the ergonomics and the information technology. The intelligent space, which is a part of the HCI, is an important area to provide effective user interface for the disabled, who are alienated from the information-oriented society. In the intelligent space for the disabled, the method supporting information depends on types of disability. In this paper, we only support the hearing-impaired. It is material to the gaze direction detection method because it is very efficient information provide method to present information on gazing direction point, except for the information provide location perception method through directly contact with the hearing-impaired. We proposed the gaze direction detection method must be necessary in order to provide the residence life application to the hearing-impaired like this. The proposed method detects the region of the user from multi-view camera images, generates candidates for directions of gaze for horizontal and vertical from each camera, and calculates the gaze direction of the user through the comparison with the size of each candidate. In experimental results, the proposed method showed high detection rate with gaze direction and foot sensing rate with user's position, and showed the performance possibility of the scenario for the disabled.

The Influence of Stimulus Contrast and Color on Target Detection under Multiple Rapid Serial Visual Presentation (다중신속순차제시아래 자극의 명암대비 및 색상이 표적 탐지에 미치는 영향)

  • Park, Jong-Min;Kim, Giyeon;Hyun, Joo-Seok
    • Science of Emotion and Sensibility
    • /
    • v.20 no.2
    • /
    • pp.137-148
    • /
    • 2017
  • The present study examined the effect of stimulus contrast and color on detection of a target embedded in streams of letters. In Experiment 1, each trial displayed four rapid serial visual presentation (RSVP) streams of letters (i.e., multi-RSVP), and each stream occupied one of four different locations. Each frame in the RSVP stream had four white distractors at the locations except one frame where a dim grey target was displayed at a location with three white distractors at the remaining locations. In the low-visibility target condition, the target's grey color was slightly darker than the background grey whereas much dimmer in the high-visibility condition. Participants were asked to report presence of a predesignated target as quickly and accurately as possible upon its detection in each trial, and their target detection turned out more accurate and quicker in the high-visibility than the low-visibility condition. In Experiment 2, the same RSVP displays and task as Experiment were used, but the grey target letters in the high-visibility condition were replaced with those of distinct chromatic colors. Participants detected target presence more accurately in the high-visibility condition, but the reaction time did not differ between the visibility conditions. The results indicate that higher stimulus contrast as well as distinct color can improve perception of a target stimulus displayed among visually-demanding background, but also suggest that stimulus contrast may play a more substantial role for such perceptual improvement.

Game-bot detection based on Clustering of asset-varied location coordinates (자산변동 좌표 클러스터링 기반 게임봇 탐지)

  • Song, Hyun Min;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.1131-1141
    • /
    • 2015
  • In this paper, we proposed a new approach of machine learning based method for detecting game-bots from normal players in MMORPG by inspecting the player's action log data especially in-game money increasing/decreasing event log data. DBSCAN (Density Based Spatial Clustering of Applications with Noise), an one of density based clustering algorithms, is used to extract the attributes of spatial characteristics of each players such as a number of clusters, a ratio of core points, member points and noise points. Most of all, even game-bot developers know principles of this detection system, they cannot avoid the system because moving a wide area to hunt the monster is very inefficient and unproductive. As the result, game-bots show definite differences from normal players in spatial characteristics such as very low ratio, less than 5%, of noise points while normal player's ratio of noise points is high. In experiments on real action log data of MMORPG, our game-bot detection system shows a good performance with high game-bot detection accuracy.

Automatic Change Detection Based on Areal Feature Matching in Different Network Data-sets (이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지)

  • Kim, Jiyoung;Huh, Yong;Yu, Kiyun;Kim, Jung Ok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.483-491
    • /
    • 2013
  • By a development of car navigation systems and mobile or positioning technology, it increases interest in location based services, especially pedestrian navigation systems. Updating of digital maps is important because digital maps are mass data and required to short updating cycle. In this paper, we proposed change detection for different network data-sets based on areal feature matching. Prior to change detection, we defined type of updating between different network data-sets. Next, we transformed road lines into areal features(block) that are surrounded by them and calculated a shape similarity between blocks in different data-sets. Blocks that a shape similarity is more than 0.6 are selected candidate block pairs. Secondly, we detected changed-block pairs by bipartite graph clustering or properties of a concave polygon according to types of updating, and calculated Fr$\acute{e}$chet distance between segments within the block or forming it. At this time, road segments of KAIS map that Fr$\acute{e}$chet distance is more than 50 are extracted as updating road features. As a result of accuracy evaluation, a value of detection rate appears high at 0.965. We could thus identify that a proposed method is able to apply to change detection between different network data-sets.

Video Matching Algorithm of Content-Based Video Copy Detection for Copyright Protection (저작권보호를 위한 내용기반 비디오 복사검출의 비디오 정합 알고리즘)

  • Hyun, Ki-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.3
    • /
    • pp.315-322
    • /
    • 2008
  • Searching a location of the copied video in video database, signatures should be robust to video reediting, channel noise, time variation of frame rate. Several kinds of signatures has been proposed. Ordinal signature, one of them, is difficult to describe the spatial characteristics of frame due to the site of fixed window, $N{\times}N$, which is compute the average gray value. In this paper, I studied an algorithm of sequence matching in video copy detection for the copyright protection, employing the R-tree index method for retrieval and suggesting a robust ordinal signatures for the original video clips and the same signatures of the pirated video. Robust ordinal has a 2-dimensional vector structures that has a strong to the noise and the variation of the frame rate. Also, it express as MBR form in search space of R-tree. Moreover, I focus on building a video copy detection method into which content publishers register their valuable digital content. The video copy detection algorithms compares the web content to the registered content and notifies the content owners of illegal copies. Experimental results show the proposed method is improve the video matching rate and it has a characteristics of signature suitable to the large video databases.

  • PDF

Estimating a Range of Lane Departure Allowance based on Road Alignment in an Autonomous Driving Vehicle (자율주행 차량의 도로 평면선형 기반 차로이탈 허용 범위 산정)

  • Kim, Youngmin;Kim, Hyoungsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.81-90
    • /
    • 2016
  • As an autonomous driving vehicle (AV) need to cope with external road conditions by itself, its perception performance for road environment should be better than that of a human driver. A vision sensor, one of AV sensors, performs lane detection function to percept road environment for performing safe vehicle steering, which relates to define vehicle heading and lane departure prevention. Performance standards for a vision sensor in an ADAS(Advanced Driver Assistance System) focus on the function of 'driver assistance', not on the perception of 'independent situation'. So the performance requirements for a vision sensor in AV may different from those in an ADAS. In assuming that an AV keep previous steering due to lane detection failure, this study calculated lane departure distances between the AV location following curved road alignment and the other one driving to the straight in a curved section. We analysed lane departure distance and time with respect to the allowance of lane detection malfunction of an AV vision sensor. With the results, we found that an AV would encounter a critical lane departure situation if a vision sensor loses lane detection over 1 second. Therefore, it is concluded that the performance standards for an AV should contain more severe lane departure situations than those of an ADAS.

Study on Detection for Cochlodinium polykrikoides Red Tide using the GOCI image and Machine Learning Technique (GOCI 영상과 기계학습 기법을 이용한 Cochlodinium polykrikoides 적조 탐지 기법 연구)

  • Unuzaya, Enkhjargal;Bak, Su-Ho;Hwang, Do-Hyun;Jeong, Min-Ji;Kim, Na-Kyeong;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1089-1098
    • /
    • 2020
  • In this study, we propose a method to detect red tide Cochlodinium Polykrikoide using by machine learning and geostationary marine satellite images. To learn the machine learning model, GOCI Level 2 data were used, and the red tide location data of the National Fisheries Research and Development Institute was used. The machine learning model used logistic regression model, decision tree model, and random forest model. As a result of the performance evaluation, compared to the traditional GOCI image-based red tide detection algorithm without machine learning (Son et al., 2012) (75%), it was confirmed that the accuracy was improved by about 13~22%p (88~98%). In addition, as a result of comparing and analyzing the detection performance between machine learning models, the random forest model (98%) showed the highest detection accuracy.It is believed that this machine learning-based red tide detection algorithm can be used to detect red tide early in the future and track and monitor its movement and spread.

Change Detection Using Deep Learning Based Semantic Segmentation for Nuclear Activity Detection and Monitoring (핵 활동 탐지 및 감시를 위한 딥러닝 기반 의미론적 분할을 활용한 변화 탐지)

  • Song, Ahram;Lee, Changhui;Lee, Jinmin;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.991-1005
    • /
    • 2022
  • Satellite imaging is an effective supplementary data source for detecting and verifying nuclear activity. It is also highly beneficial in regions with limited access and information, such as nuclear installations. Time series analysis, in particular, can identify the process of preparing for the conduction of a nuclear experiment, such as relocating equipment or changing facilities. Differences in the semantic segmentation findings of time series photos were employed in this work to detect changes in meaningful items connected to nuclear activity. Building, road, and small object datasets made of KOMPSAT 3/3A photos given by AIHub were used to train deep learning models such as U-Net, PSPNet, and Attention U-Net. To pick relevant models for targets, many model parameters were adjusted. The final change detection was carried out by including object information into the first change detection, which was obtained as the difference in semantic segmentation findings. The experiment findings demonstrated that the suggested approach could effectively identify altered pixels. Although the suggested approach is dependent on the accuracy of semantic segmentation findings, it is envisaged that as the dataset for the region of interest grows in the future, so will the relevant scope of the proposed method.

Analysis of Anti-Reversing Functionalities of VMProtect and Bypass Method Using Pin (VMProtect의 역공학 방해 기능 분석 및 Pin을 이용한 우회 방안)

  • Park, Seongwoo;Park, Yongsu
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.11
    • /
    • pp.297-304
    • /
    • 2021
  • Commercial obfuscation tools (protectors) aim to create difficulties in analyzing the operation process of software by applying obfuscation techniques and Anti-reversing techniques that delay and interrupt the analysis of programs in software reverse engineering process. In particular, in case of virtualization detection and anti-debugging functions, the analysis tool exits the normal execution flow and terminates the program. In this paper, we analyze Anti-reversing techniques of executables with Debugger Detection and Viralization Tools Detection options through VMProtect 3.5.0, one of the commercial obfuscation tools (protector), and address bypass methods using Pin. In addition, we predicted the location of the applied obfuscation technique by finding out a specific program termination routine through API analysis since there is a problem that the program is terminated by the Anti-VM technology and the Anti-DBI technology and drew up the algorithm flowchart for bypassing the Anti-reversing techniques. Considering compatibility problems and changes in techniques from differences in versions of the software used in experiment, it was confirmed that the bypass was successful by writing the pin automation bypass code in the latest version of the software (VMProtect, Windows, Pin) and conducting the experiment. By improving the proposed analysis method, it is possible to analyze the Anti-reversing method of the obfuscation tool for which the method is not presented so far and find a bypass method.

YOLO-based Traffic Signal Detection for Identifying the Violation of Motorbike Riders (YOLO 기반의 교통 신호등 인식을 통한 오토바이 운전자의 신호 위반 여부 확인)

  • Wahyutama, Aria Bisma;Hwang, Mintae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.141-143
    • /
    • 2022
  • This paper presented a new technology to identify traffic violations of motorbike riders by detecting the traffic signal using You Only Look Once (YOLO) object detection. The hardware module that is mounted on the front of the motorbike consists of Raspberry Pi with a camera to run the YOLO object detection, a GPS module to acquire the motorcycle's coordinate, and a LoRa communication module to send the data to a cloud DB. The main goal of the software is to determine whether a motorbike has violated a traffic signal. This paper proposes a function to recognize the red traffic signal colour with its movement inside the camera angle and determine that the traffic signal violation happens if the traffic signal is moving to the right direction (the rider turns left) or moving to the top direction (the riders goes straight). Furthermore, if a motorbike rider is violated the signal, the rider's personal information (name, mobile phone number, etc), the snapshot of the violation situation, rider's location, and date/time will be sent to a cloud DB. The violation information will be delivered to the driver's smartphone as a push notification and the local police station to be used for issuing violation tickets, which is expected to prevent motorbike riders from violating traffic signals.

  • PDF