• Title/Summary/Keyword: location detection

Search Result 1,591, Processing Time 0.03 seconds

Automation Monitoring With Sensors For Detecting Covid Using Backpropagation Algorithm

  • Kshirsagar, Pravin R.;Manoharan, Hariprasath;Tirth, Vineet;Naved, Mohd;Siddiqui, Ahmad Tasnim;Sharma, Arvind K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2414-2433
    • /
    • 2021
  • This article focuses on providing remedial solutions for COVID disease through the data collection process. Recently, In India, sudden human losses are happening due to the spread of infectious viruses. All people are not able to differentiate the number of affected people and their locations. Therefore, the proposed method integrates robotic technology for monitoring the health condition of different people. If any individual is affected by infectious disease, then data will be collected and within a short span of time, it will be reported to the control center. Once, the information is collected, then all individuals can access the same using an application platform. The application platform will be developed based on certain parametric values, where the location of each individual will be retained. For precise application development, the parametric values related to the identification process such as sub-interval points and intensity of detection should be established. Therefore, to check the effectiveness of the proposed robotic technology, an online monitoring system is employed where the output is realized using MATLAB. From simulated values, it is observed that the proposed method outperforms the existing method in terms of data quality with an observed percentage of 82.

Detection of Ecosystem Distribution Plants using Drone Hyperspectral Spectrum and Spectral Angle Mapper (드론 초분광 스펙트럼과 분광각매퍼를 적용한 생태계교란식물 탐지)

  • Kim, Yong-Suk
    • Journal of Environmental Science International
    • /
    • v.30 no.2
    • /
    • pp.173-184
    • /
    • 2021
  • Ecological disturbance plants distributed throughout the country are causing a lot of damage to us directly or indirectly in terms of ecology, economy and health. These plants are not easy to manage and remove because they have a strong fertility, and it is very difficult to express them quantitatively. In this study, drone hyperspectral sensor data and Field spectroradiometer were acquired around the experimental area. In order to secure the quality accuracy of the drone hyperspectral image, GPS survey was performed, and a location accuracy of about 17cm was secured. Spectroscopic libraries were constructed for 7 kinds of plants in the experimental area using a Field spectroradiometer, and drone hyperspectral sensors were acquired in August and October, respectively. Spectral data for each plant were calculated from the acquired hyperspectral data, and spectral angles of 0.08 to 0.36 were derived. In most cases, good values of less than 0.5 were obtained, and Ambrosia trifida and Lactuca scariola, which are common in the experimental area, were extracted. As a result, it was found that about 29.6% of Ambrosia trifida and 31.5% of Lactuca scariola spread in October than in August. In the future, it is expected that better results can be obtained for the detection of ecosystem distribution plants if standardized indicators are calculated by constructing a precise spectral angle standard library based on more data.

The Robust Artillery Locating Radar Deployment Model Against Enemy' s Attack Scenarios (적 공격시나리오 기반 대포병 표적탐지레이더 배치모형)

  • Lee, Seung-Ryul;Lee, Moon-Gul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.217-228
    • /
    • 2020
  • The ROK Army must detect the enemy's location and the type of artillery weapon to respond effectively at wartime. This paper proposes a radar positioning model by applying a scenario-based robust optimization method i.e., binary integer programming. The model consists of the different types of radar, its available quantity and specification. Input data is a combination of target, weapon types and enemy position in enemy's attack scenarios. In this scenario, as the components increase by one unit, the total number increases exponentially, making it difficult to use all scenarios. Therefore, we use partial scenarios to see if they produce results similar to those of the total scenario, and then apply them to case studies. The goal of this model is to deploy an artillery locating radar that maximizes the detection probability at a given candidate site, based on the probability of all possible attack scenarios at an expected enemy artillery position. The results of various experiments including real case study show the appropriateness and practicality of our proposed model. In addition, the validity of the model is reviewed by comparing the case study results with the detection rate of the currently available radar deployment positions of Corps. We are looking forward to enhance Korea Artillery force combat capability through our research.

A study on the detection of misalignment between piercing punch and die using a bolt-type piezo sensor (볼트형 피에조 센서를 활용한 피어싱 펀치의 얼라인먼트 불량 검출에 관한 연구)

  • Jeon, Yong-Jun;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.51-56
    • /
    • 2021
  • Piercing is the process of shearing a circular hole in sheet metal, whose high shear force makes it difficult to secure the durability of tools. In addition, uneven clearance between tools due to poor alignment of the piercing punch causes accelerated die wear and breakage of the tool. This study reviewed the feasibility of in-situ determining alignment failure during the piercing process by analyzing the signal deviation of a bolt-type piezo sensor installed inside the tool whose alignment level was controlled. Finite element analysis was performed to select the optimal sensor location on the piercing tool for sensitive detection of process signals. A well-aligned piercing process results in uniform deformation in the circumferential direction, and shearing is completed at a stroke similar to the sheet thickness. Afterward, a sharp decrease in shear load is observed. The misaligned piecing punch leads to a gradual decrease in the load after the maximum shear load. This gradual decrease is due to the progressive shear deformation that proceeds in the circumferential direction after the initial crack occurs at the narrow clearance site. Therefore, analyzing the stroke at which the maximum shear load occurs and the load reduction rate after that could detect the misalignment of the piercing punch in real-time.

MS Office Malicious Document Detection Based on CNN (CNN 기반 MS Office 악성 문서 탐지)

  • Park, Hyun-su;Kang, Ah Reum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.439-446
    • /
    • 2022
  • Document-type malicious codes are being actively distributed using attachments on websites or e-mails. Document-type malicious code is relatively easy to bypass security programs because the executable file is not executed directly. Therefore, document-type malicious code should be detected and prevented in advance. To detect document-type malicious code, we identified the document structure and selected keywords suspected of being malicious. We then created a dataset by converting the stream data in the document to ASCII code values. We specified the location of malicious keywords in the document stream data, and classified the stream as malicious by recognizing the adjacent information of the malicious keywords. As a result of detecting malicious codes by applying the CNN model, we derived accuracies of 0.97 and 0.92 in stream units and file units, respectively.

Automatic detection system for surface defects of home appliances based on machine vision (머신비전 기반의 가전제품 표면결함 자동검출 시스템)

  • Lee, HyunJun;Jeong, HeeJa;Lee, JangGoon;Kim, NamHo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.47-55
    • /
    • 2022
  • Quality control in the smart factory manufacturing process is an important factor. Currently, quality inspection of home appliance manufacturing parts produced by the mold process is mostly performed with the naked eye of the operator, resulting in a high error rate of inspection. In order to improve the quality competition, an automatic defect detection system was designed and implemented. The proposed system acquires an image by photographing an object with a high-performance scan camera at a specific location, and reads defective products due to scratches, dents, and foreign substances according to the vision inspection algorithm. In this study, the depth-based branch decision algorithm (DBD) was developed to increase the recognition rate of defects due to scratches, and the accuracy was improved.

A Method for Text Detection and Enhancement using Spatio-Temporal Information (시공간 정보를 이용한 자막 탐지 및 향상 기법)

  • Jeong, Jong-Myeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.8
    • /
    • pp.43-50
    • /
    • 2009
  • Text information in a digital video provides crucial information to acquire semantic information of the video. In the proposed method. text candidate regions are extracted from input sequence by using characteristics of stroke and text candidate regions are localized by using projection to produce text bounding boxes. Bounding boxes containing text regions are verified geometrically and each bounding box existing same location is tracked by calculating matching measure. which is defined as the mean of absolute difference between bounding boxes in the current frame and previous frames. Finally. text regions are enhanced using temporal redundancy of bounding boxes to produce final results. Experimental results for various videos show the validity of the proposed method.

Deep-learning-based gestational sac detection in ultrasound images using modified YOLOv7-E6E model

  • Tae-kyeong Kim;Jin Soo Kim;Hyun-chong Cho
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.627-637
    • /
    • 2023
  • As the population and income levels rise, meat consumption steadily increases annually. However, the number of farms and farmers producing meat decrease during the same period, reducing meat sufficiency. Information and Communications Technology (ICT) has begun to be applied to reduce labor and production costs of livestock farms and improve productivity. This technology can be used for rapid pregnancy diagnosis of sows; the location and size of the gestation sacs of sows are directly related to the productivity of the farm. In this study, a system proposes to determine the number of gestation sacs of sows from ultrasound images. The system used the YOLOv7-E6E model, changing the activation function from sigmoid-weighted linear unit (SiLU) to a multi-activation function (SiLU + Mish). Also, the upsampling method was modified from nearest to bicubic to improve performance. The model trained with the original model using the original data achieved mean average precision of 86.3%. When the proposed multi-activation function, upsampling, and AutoAugment were applied, the performance improved by 0.3%, 0.9%, and 0.9%, respectively. When all three proposed methods were simultaneously applied, a significant performance improvement of 3.5% to 89.8% was achieved.

Feasibility study of a resistive-type sodium aerosol detector with ZnO nanowires for sodium-cooled fast reactors

  • Jewhan Lee;Da-Young Gam;Ki Ean Nam;Seong J. Cho;Hyungmo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2373-2379
    • /
    • 2023
  • In sodium systems, leakage is one of the safety concerns; it can cause chemical reactions, which may result in fires. There are contact and non-contact types of leak detectors, and the conventional method of non-contact type detection is by gas sampling. Because of the complexity of this method, there has always been a need for a simple gas sensor, and the resistive-type nanostructure ZnO sensor is a promising option with various advantages. In this study, a ZnO sensor was fabricated, and the concept was tested as a leak detector using a dedicated experiment facility. The experiment results showed distinctive changes in resistance with the presence of sodium aerosol under various conditions. Replacing the conventional gas sampling with the ZnO sensors is expected to enable identification of the leakage location if used as a point-wise instrumentation and to greatly reduce the total cost, making the system simple, light, and effective. For further study, more tests will be performed to evaluate the sensitivity of key parameters under various conditions.

Change points detection for nonstationary multivariate time series

  • Yeonjoo Park;Hyeongjun Im;Yaeji Lim
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.369-388
    • /
    • 2023
  • In this paper, we develop the two-step procedure that detects and estimates the position of structural changes for multivariate nonstationary time series, either on mean parameters or second-order structures. We first investigate the presence of mean structural change by monitoring data through the aggregated cumulative sum (CUSUM) type statistic, a sequential procedure identifying the likely position of the change point on its trend. If no mean change point is detected, the proposed method proceeds to scan the second-order structural change by modeling the multivariate nonstationary time series with a multivariate locally stationary Wavelet process, allowing the time-localized auto-correlation and cross-dependence. Under this framework, the estimated dynamic spectral matrices derived from the local wavelet periodogram capture the time-evolving scale-specific auto- and cross-dependence features of data. We then monitor the change point from the lower-dimensional approximated space of the spectral matrices over time by applying the dynamic principal component analysis. Different from existing methods requiring prior information on the type of changes between mean and covariance structures as an input for the implementation, the proposed algorithm provides the output indicating the type of change and the estimated location of its occurrence. The performance of the proposed method is demonstrated in simulations and the analysis of two real finance datasets.