• Title/Summary/Keyword: location detection

Search Result 1,591, Processing Time 0.027 seconds

Real-Time Traffic Information Collection Using Multiple Virtual Detection Lines (다중 가상 검지선을 이용한 실시간 교통정보 수집)

  • Kim, Eui-Chul;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.543-552
    • /
    • 2008
  • ATIS(Advanced Traveler Information System) is the system to offer a real-time traffic information or traffic situation for the benefit of the client. One of traffic information collection methods for ATIS research is the method of image analysis. The method is divided into two : one is the method to set two loop detectors at the area and the other is the method detecting the vehicle through an image analysis. In this paper, we propose a real-time traffic information collection system to mix two methods. The system installs multiple virtual detection lines and traces the location of the vehicle. Use of multiple virtual detection lines supplements the defect of the method of loop detectors. And we drew a representative pixels in the detecting area and used it for image analysis. This is to solve the problem of time delay which increases as the image size increases. We gathered traffic images and experimented using the system and got 92.32% of detection accuracy.

Magnetic Signals Analysis for Vehicle Detection Sensor and Magnetic Field Shape (자기신호분석을 통한 차량의 감지센서와 자기형상에 관한 연구)

  • Choi, Hak-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.349-354
    • /
    • 2015
  • This paper is about utilizing magnetic sensor to measure magnetic signal and analyze the form of magnetic signal for vehicle detection. For magnetic sensor, MR sensor from Honeywell company was used, and Helmholtz coil of which 3 axis' length is 1.2 m was manufactured to check the capability of the sensor and estimate its ability to detect the magnetic field. Vehicle detection was performed in following steps: installing sensor in road lane and non-road lane; estimating magnetic field when the vehicle is run by the driver; and estimating magnetic field of 7 different vehicles with different sizes. Also, sensor was installed at SUV and small-sized vehicle's park and non-park area to analyze the form of magnetic field. Lastly, the form of magnetic field made by different parts of the vehicle was analyzed. Based on the analysis, the form of magnetic field's magnetic peak value was bigger for road lane than non-road lane, complicated form was useful to distinguish the road lane above the installed sensor and the location of the running car, and the types of vehicle could be sorted because the variance of the magnetic field was bigger for bigger size of the vehicle. Also, it was confirmed that the forms of vehicle in parts-by-parts estimates.

Spectrum Sensing with Combining Spectral Correlation Density for ATSC Signal Detection (ATSC 신호 검출을 위한 스펙트럴 상관 밀도의 결합을 이용하는 스펙트럼 센싱)

  • Yoo, Do-Sik;Lim, Jongtae
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.298-305
    • /
    • 2013
  • In this paper, we propose simple combining schemes for sensing ATSC digital television signals with spectral correlation density (SCD). The detection algorithms exploiting the cyclostationarity exhibited by the pilot of ATSC digital television signals usually use the SCD value at a given particular frequency. However, we found that non-zero SCDs are found to be distributed over a certain range of frequencies in multipath fading environment. To utilize a set of non-zero SCD values computed in the vicinity of the pilot location, we formulate a class of combining methods in analogy with the maximal ratio combining, the square law combining and the equal gain combining. We show that the proposed simple combining schemes improve the detection performance by 0.5~1.0dB under multipath fading environments.

A Study on Machine Learning Algorithm Suitable for Automatic Crack Detection in Wall-Climbing Robot (벽면 이동로봇의 자동 균열검출에 적합한 기계학습 알고리즘에 관한 연구)

  • Park, Jae-Min;Kim, Hyun-Seop;Shin, Dong-Ho;Park, Myeong-Suk;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.449-456
    • /
    • 2019
  • This paper is a study on the construction of a wall-climbing mobile robot using vacuum suction and wheel-type movement, and a comparison of the performance of an automatic wall crack detection algorithm based on machine learning that is suitable for such an embedded environment. In the embedded system environment, we compared performance by applying recently developed learning methods such as YOLO for object learning, and compared performance with existing edge detection algorithms. Finally, in this study, we selected the optimal machine learning method suitable for the embedded environment and good for extracting the crack features, and compared performance with the existing methods and presented its superiority. In addition, intelligent problem - solving function that transmits the image and location information of the detected crack to the manager device is constructed.

Research on the Detection of Image Tampering

  • Kim, Hye-jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.111-121
    • /
    • 2021
  • As the main carrier of information, digital image is becoming more and more important. However, with the popularity of image acquisition equipment and the rapid development of image editing software, in recent years, digital image counterfeiting incidents have emerged one after another, which not only reduces the credibility of images, but also brings great negative impacts to society and individuals. Image copy-paste tampering is one of the most common types of image tampering, which is easy to operate and effective, and is often used to change the semantic information of digital images. In this paper, a method to protect the authenticity and integrity of image content by studying the tamper detection method of image copy and paste was proposed. In view of the excellent learning and analysis ability of deep learning, two tamper detection methods based on deep learning were proposed, which use the traces left by image processing operations to distinguish the tampered area from the original area in the image. A series of experimental results verified the rationality of the theoretical basis, the accuracy of tampering detection, location and classification.

YOLOv5-based Chimney Detection Using High Resolution Remote Sensing Images (고해상도 원격탐사 영상을 이용한 YOLOv5기반 굴뚝 탐지)

  • Yoon, Young-Woong;Jung, Hyung-Sup;Lee, Won-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1677-1689
    • /
    • 2022
  • Air pollution is social issue that has long-term and short-term harmful effect on the health of animals, plants, and environments. Chimneys are the primary source of air pollutants that pollute the atmosphere, so their location and type must be detected and monitored. Power plants and industrial complexes where chimneys emit air pollutants, are much less accessible and have a large site, making direct monitoring cost-inefficient and time-inefficient. As a result, research on detecting chimneys using remote sensing data has recently been conducted. In this study, YOLOv5-based chimney detection model was generated using BUAA-FFPP60 open dataset create for power plants in Hebei Province, Tianjin, and Beijing, China. To improve the detection model's performance, data split and data augmentation techniques were used, and a training strategy was developed for optimal model generation. The model's performance was confirmed using various indicators such as precision and recall, and the model's performance was finally evaluated by comparing it to existing studies using the same dataset.

Two-stage damage identification for bridge bearings based on sailfish optimization and element relative modal strain energy

  • Minshui Huang;Zhongzheng Ling;Chang Sun;Yongzhi Lei;Chunyan Xiang;Zihao Wan;Jianfeng Gu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.715-730
    • /
    • 2023
  • Broad studies have addressed the issue of structural element damage identification, however, rubber bearing, as a key component of load transmission between the superstructure and substructure, is essential to the operational safety of a bridge, which should be paid more attention to its health condition. However, regarding the limitations of the traditional bearing damage detection methods as well as few studies have been conducted on this topic, in this paper, inspired by the model updating-based structural damage identification, a two-stage bearing damage identification method has been proposed. In the first stage, we deduce a novel bearing damage localization indicator, called element relative MSE, to accurately determine the bearing damage location. In the second one, the prior knowledge of bearing damage localization is combined with sailfish optimization (SFO) to perform the bearing damage estimation. In order to validate the feasibility, a numerical example of a 5-span continuous beam is introduced, also the noise robustness has been investigated. Meanwhile, the effectiveness and engineering applicability are further verified based on an experimental simply supported beam and actual engineering of the I-40 Bridge. The obtained results are good, which indicate that the proposed method is not only suitable for simple structures but also can accurately locate the bearing damage site and identify its severity for complex structure. To summarize, the proposed method provides a good guideline for the issue of bridge bearing detection, which could be used to reduce the difficulty of the traditional bearing failure detection approach, further saving labor costs and economic expenses.

Apple detection dataset with visibility and deep learning detection using adaptive heatmap regression (가시성을 표시한 사과 검출 데이터셋과 적응형 히트맵 회귀를 이용한 딥러닝 검출)

  • Tae-Woong Yoo;Dasom Seo;Minwoo Kim;Seul Ki Lee;Il-Seok, Oh
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.19-28
    • /
    • 2023
  • In the fruit harvesting field, interest in automatic robot harvesting is increasing due to various seasonality and rising harvesting costs. Accurate apple detection is a difficult problem in complex orchard environments with changes in light, vibrations caused by wind, and occlusion of leaves and branches. In this paper, we introduce a dataset and an adaptive heatmap regression model that are advantageous for robot automatic apple harvesting. The apple dataset was labeled with not only the apple location but also the visibility. We propose a method to detect the center point of an apple using an adaptive heatmap regression model that adjusts the Gaussian shape according to visibility. The experimental results showed that the performance of the proposed method was applicable to apple harvesting robots, with MAP@K of 0.9809 and 0.9801 when K=5 and K=10, respectively.

Crosswalk Detection Model for Visually impaired Using Deep Learning (딥러닝을 이용한 시각장애인용 횡단보도 탐지 모델 연구)

  • Junsoo Kim;Hyuk Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.67-75
    • /
    • 2024
  • Crosswalks play an important role for the safe movement of pedestrians in a complex urban environment. However, for the visually impaired, crosswalks can be a big risk factor. Although assistive tools such as braille blocks and acoustic traffic lights exist for safe walking, poor management can sometimes act as a hindrance to safety. This paper proposes a method to improve accuracy in a deep learning-based real-time crosswalk detection model that can be used in applications for pedestrian assistance for the disabled at the beginning. The image was binarized by utilizing the characteristic that the white line of the crosswalk image contrasts with the road surface, and through this, the crosswalk could be better recognized and the location of the crosswalk could be more accurately identified by using two models that learned the whole and the middle part of the crosswalk, respectively. In addition, it was intended to increase accuracy by creating a boundary box that recognizes crosswalks in two stages: whole and part. Through this method, additional frames that the detection model did not detect in RGB image learning from the crosswalk image could be detected.

Generation of wind turbine blade surface defect dataset based on StyleGAN3 and PBGMs

  • W.R. Li;W.H. Zhao;T.T. Wang;Y.F. Du
    • Smart Structures and Systems
    • /
    • v.34 no.2
    • /
    • pp.129-143
    • /
    • 2024
  • In recent years, with the vigorous development of visual algorithms, a large amount of research has been conducted on blade surface defect detection methods represented by deep learning. Detection methods based on deep learning models must rely on a large and rich dataset. However, the geographical location and working environment of wind turbines makes it difficult to effectively capture images of blade surface defects, which inevitably hinders visual detection. In response to the challenge of collecting a dataset for surface defects that are difficult to obtain, a multi-class blade surface defect generation method based on the StyleGAN3 (Style Generative Adversarial Networks 3) deep learning model and PBGMs (Physics-Based Graphics Models) method has been proposed. Firstly, a small number of real blade surface defect datasets are trained using the adversarial neural network of the StyleGAN3 deep learning model to generate a large number of high-resolution blade surface defect images. Secondly, the generated images are processed through Matting and Resize operations to create defect foreground images. The blade background images produced using PBGM technology are randomly fused, resulting in a diverse and high-resolution blade surface defect dataset with multiple types of backgrounds. Finally, experimental validation has proven that the adoption of this method can generate images with defect characteristics and high resolution, achieving a proportion of over 98.5%. Additionally, utilizing the EISeg annotation method significantly reduces the annotation time to just 1/7 of the time required for traditional methods. These generated images and annotated data of blade surface defects provide robust support for the detection of blade surface defects.