• Title/Summary/Keyword: location detection

Search Result 1,591, Processing Time 0.029 seconds

Detection of Fatigue Damage in Aluminum Thin Plates with Rivet Holes by Acoustic Emission (리벳 구멍을 가진 알루미늄 박판구조의 피로손상 탐지를 위한 음향방출의 활용)

  • Kim, Jung-Chan;Kim, Sung-Jin;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.246-253
    • /
    • 2003
  • The initiation and growth of short fatigue cracks in the simulated aircraft structure with a series of rivet holes was detected by acoustic emission (AE). The location and the size of short tracks were determined by AE source location techniques and the measurement with traveling microscope. AE events increased intermittently with the initiation and growth of short cracks to form a stepwise increment curve of cumulative AE events. For the precise determination of AE source locations, a region-of-interest (ROI) was set around the rivet holes based on the plastic zone size in fracture mechanics. Since the signal-to-noise ratio (SNR) was very low at this early stage of fatigue cracks, the accuracy of source location was also enhanced by the wavelet transform do-noising. In practice, the majority of AE signals detected within the ROI appeared to be noise from various origins. The results showed that the effort of structural geometry and SNR should be closely taken into consideration for the accurate evaluation of fatigue damage in the structure.

A Study on the Application of Acoustic Emission for the fatigue Test of Ship Welded Structure (선박의 용접구조 피로시험에 대한 음향방출기법의 적용 연구)

  • An, Sung-Chan;Kim, Dae-Soo;Lee, Jin-Hee;Park, Jin-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.220-226
    • /
    • 2003
  • This paper presents the result of an investigation on the application of the acoustic emission method to the monitoring of fatigue crack initiation, growth and track location in welded joints. Fatigue test was carried out for a typical fillet welded joint of ship structure. AE parameter such as ring down count was analyzed in time domain and crack locations were examined by source location and cluster option which is one of the functions of AE signal processor The usability of AE mettled was confirmed for the detection of the initiation and location of through crack.

Artificial Intelligence-Based Harmful Birds Detection Control System (인공지능 기반 유해조류 탐지 관제 시스템)

  • Sim, Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.175-182
    • /
    • 2021
  • The purpose of this paper is to develop a machine learning-based marine drone to prevent the farming from harmful birds such as ducks. Existing drones have been developed as marine drones to solve the problem of being lost if they collide with birds in the air or are in the sea. We designed a CNN-based learning algorithm to judge harmful birds that appear on the sea by maritime drones operating by autonomous driving. It is designed to transmit video to the control PC by connecting the Raspberry Pi to the camera for location recognition and tracking of harmful birds. After creating a map linked with the location GPS coordinates in advance at the mobile-based control center, the GPS location value for the location of the harmful bird is received and provided, so that a marine drone is dispatched to combat the harmful bird. A bird fighting drone system was designed and implemented.

A Study on the Security of Infrastructure using fiber Optic Scattering Sensors (광섬유 산란형 센서를 이용한 사회기반시설물의 보안에 관한 연구)

  • Kwon, Il-Bum;Yoon, Dong-Jin;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.499-507
    • /
    • 2004
  • We have studied tile detection techniques, which can determine the location and the weight of an intruder into infrastructure, by using fiber-optic ROTDR (Rayleigh optical time domain reflectometry) sensor and fiber-optic BOTDA (Brillouin Optical time domain analysis) sensor, which can use an optical fiber longer than that of ROTDR sensor Fiber-optic sensing plates of ROTDR sensor, which arc buried in sand, were prepared to respond the intruder effects. The signal of ROTDR was analyzed to confirm the detection performance. The constructed ROTDR could be used up to 10km at the pulse width of 30ns. The location error was less than 2 m and the weight could be detected as 4 grades, such as 20kgf, 40kgf, 60kgf and 80kgf. Also, fiber optic BOTDA sensor was developed to be able to detect intrusion effect through an optical fiber of tells of kilometers longer than ROTDR sensor. fiber-optic BOTDA sensor was constructed with 1 laser diode and 2 electro-optic modulators. The intrusion detection experiment was peformed by the strain inducing set-up installed on an optical table to simulate all intrusion effect. In the result of this experiment, the intrusion effort was well detected as the distance resolution of 3m through the fiber length of about 4.81km during 1.5 seconds.

An Effective Application of AE Technique for the Detection of Defects in Steel Girder Bridges (강판형교에서의 효율적인 결함검출을 위한 AE기법의 적용)

  • Kim, Sang Hyo;Yoon, Dong Jin;Lee, Sang Ho;Kim, Hyung Suk;Park, Young Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.287-300
    • /
    • 1997
  • In this study, an effective application method of AE technique for the detection of fatigue crack in multi-girder steel bridges has been proposed. The applicability has been examined through the laboratory works with bridge model. The proposed analytical method which evaluates the remaining fatigue lives of structural members may improve the rational determination of the priority of inspection for structural members assuming to have fatigue cracks. Laboratory tests for the application of AE technique to steel girder bridges show that the frequency bands of traffic noise are in the range between 10 show that the frequency bands of traffic noise are in the range between 100~200 kHz and the AE signal raised from fatigue cracks is concentrated around 400~500 kHz. Therefore. R30 sensor is proved to be the most suitable for the detection of cracks in steel girder bridges. A linear proportionality between the crack propagation and the frequency of AE signals has been obtained. In addition, an economic and effective source location method for steel girder bridges was studied through experiments.

  • PDF

Damage Detection of Non-Ballasted Plate-Girder Railroad Bridge through Machine Learning Based on Static Strain Data (정적 변형률 데이터 기반 머신러닝에 의한 무도상 철도 판형교의 손상 탐지)

  • Moon, Taeuk;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.206-216
    • /
    • 2020
  • As the number of aging railway bridges in Korea increases, maintenance costs due to aging are increasing and continuous management is becoming more important. However, while the number of old facilities to be managed increases, there is a shortage of professional personnel capable of inspecting and diagnosing these old facilities. To solve these problems, this study presents an improved model that can detect Local damage to structures using machine learning techniques of AI technology. To construct a damage detection machine learning model, an analysis model of the bridge was set by referring to the design drawing of a non-ballasted plate-girder railroad bridge. Static strain data according to the damage scenario was extracted with the analysis model, and the Local damage index based on the reliability of the bridge was presented using statistical techniques. Damage was performed in a three-step process of identifying the damage existence, the damage location, and the damage severity. In the estimation of the damage severity, a linear regression model was additionally considered to detect random damage. Finally, the random damage location was estimated and verified using a machine learning-based damage detection classification learning model and a regression model.

Building change detection in high spatial resolution images using deep learning and graph model (딥러닝과 그래프 모델을 활용한 고해상도 영상의 건물 변화탐지)

  • Park, Seula;Song, Ahram
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.227-237
    • /
    • 2022
  • The most critical factors for detecting changes in very high-resolution satellite images are building positional inconsistencies and relief displacements caused by satellite side-view. To resolve the above problems, additional processing using a digital elevation model and deep learning approach have been proposed. Unfortunately, these approaches are not sufficiently effective in solving these problems. This study proposed a change detection method that considers both positional and topology information of buildings. Mask R-CNN (Region-based Convolutional Neural Network) was trained on a SpaceNet building detection v2 dataset, and the central points of each building were extracted as building nodes. Then, triangulated irregular network graphs were created on building nodes from temporal images. To extract the area, where there is a structural difference between two graphs, a change index reflecting the similarity of the graphs and differences in the location of building nodes was proposed. Finally, newly changed or deleted buildings were detected by comparing the two graphs. Three pairs of test sites were selected to evaluate the proposed method's effectiveness, and the results showed that changed buildings were detected in the case of side-view satellite images with building positional inconsistencies.

Back-Propagation Neural Network Based Face Detection and Pose Estimation (오류-역전파 신경망 기반의 얼굴 검출 및 포즈 추정)

  • Lee, Jae-Hoon;Jun, In-Ja;Lee, Jung-Hoon;Rhee, Phill-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.853-862
    • /
    • 2002
  • Face Detection can be defined as follows : Given a digitalized arbitrary or image sequence, the goal of face detection is to determine whether or not there is any human face in the image, and if present, return its location, direction, size, and so on. This technique is based on many applications such face recognition facial expression, head gesture and so on, and is one of important qualify factors. But face in an given image is considerably difficult because facial expression, pose, facial size, light conditions and so on change the overall appearance of faces, thereby making it difficult to detect them rapidly and exactly. Therefore, this paper proposes fast and exact face detection which overcomes some restrictions by using neural network. The proposed system can be face detection irrelevant to facial expression, background and pose rapidily. For this. face detection is performed by neural network and detection response time is shortened by reducing search region and decreasing calculation time of neural network. Reduced search region is accomplished by using skin color segment and frame difference. And neural network calculation time is decreased by reducing input vector sire of neural network. Principle Component Analysis (PCA) can reduce the dimension of data. Also, pose estimates in extracted facial image and eye region is located. This result enables to us more informations about face. The experiment measured success rate and process time using the Squared Mahalanobis distance. Both of still images and sequence images was experimented and in case of skin color segment, the result shows different success rate whether or not camera setting. Pose estimation experiments was carried out under same conditions and existence or nonexistence glasses shows different result in eye region detection. The experiment results show satisfactory detection rate and process time for real time system.

A Study on step number detection using smartphone sensors for position tracking (위치 추적을 위한 스마트폰 센서를 이용한 걸음 수 검출에 관한 연구)

  • Lee, Kwonhee;Kim, Kwanghyun;Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.119-125
    • /
    • 2018
  • Various techniques for indoor positioning using a smart phone have been studied. Among them, the positioning technology using the acceleration sensor and the gyro sensor built in the smartphone is widely used in conjunction with the WiFi fingerprint technology. The location tracking technology using sensors has been used for a long time, but the performance environment of the smartphone is poor and the user is moving with the smartphone in a certain posture. Therefore, in order to improve the accuracy of location tracking in a smartphone environment, it is necessary to study and develop appropriate algorithms in a mobile environment. In this paper, we analyze the performances of frequency analysis method, maximum sum of minimum acceleration method and adaptive threshold method, which are the user's moving step count detection algorithms, and determine the most accurate method.

Nano-delamination monitoring of BFRP nano-pipes of electrical potential change with ANNs

  • Altabey, Wael A.;Noori, Mohammad;Alarjani, Ali;Zhao, Ying
    • Advances in nano research
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • In this work, the electrical potential (EP) technique with an artificial neural networks (ANNs) for monitoring of nanostructures are used for the first time. This study employs an expert system to identify size and localize hidden nano-delamination (N.Del) inside layers of nano-pipe (N.P) manufactured from Basalt Fiber Reinforced Polymer (BFRP) laminate composite by using low-cost monitoring method of electrical potential (EP) technique with an artificial neural networks (ANNs), which are combined to decrease detection effort to discern N.Del location/size inside the N.P layers, with high accuracy, simple and low-cost. The dielectric properties of the N.P material are measured before and after N.Del introduced using arrays of electrical contacts and the variation in capacitance values, capacitance change and node potential distribution are analyzed. Using these changes in electrical potential due to N.Del, a finite element (FE) simulation model for N.Del location/size detection is generated by ANSYS and MATLAB, which are combined to simulate sensor characteristic, therefore, FE analyses are employed to make sets of data for the learning of the ANNs. The method is applied for the N.Del monitoring, to minimize the number of FE analysis in order to keep the cost and save the time of the assessment to a minimum. The FE results are in excellent agreement with an ANN and the experimental results available in the literature, thus validating the accuracy and reliability of the proposed technique.