• Title/Summary/Keyword: location detection

Search Result 1,591, Processing Time 0.035 seconds

Research of the Unmanned Vehicle Control and Modeling for Obstacle Detection and Avoidance (물체인식 및 회피를 위한 무인자동차의 제어 및 모델링에 관한 연구)

  • 김상겸;김정하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.183-192
    • /
    • 2003
  • Obstacle detection and avoidance are considered as one of the key technologies on an unmanned vehicle system. In this paper, we propose a method of obstacle detection and avoidance and it is composed of vehicle control, modeling, and sensor experiments. Obstacle detection and avoidance consist of two parts: one is longitudinal control system for acceleration and deceleration and the other is lateral control system for steering control. Each system is used for unmanned vehicle control, which notes its location, recognizes obstacles surrounding it, and makes a decision how fast to proceed according to circumstances. During the operation, the control system of the vehicle can detect obstacles and perform obstacle avoidance on the road, which involves vehicle velocity. In this paper, we propose a method for vehicle control, modeling, and obstacle avoidance, which are evaluated through road tests.

Deep-learning Sliding Window Based Object Detection and Tracking for Generating Trigger Signal of the LPR System (LPR 시스템 트리거 신호 생성을 위한 딥러닝 슬라이딩 윈도우 방식의 객체 탐지 및 추적)

  • Kim, Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.4
    • /
    • pp.85-94
    • /
    • 2021
  • The LPR system's trigger sensor makes problem occasionally due to the heave weight of vehicle or the obsolescence equipment. If we replace the hardware sensor to the deep-learning based software sensor in order to generate the trigger signal, LPR system maintenance would be a lot easier. In this paper we proposed the deep-learning sliding window based object detection and tracking algorithm for the LPR system's trigger signal generation. The gate passing vehicle's license plate recognition results are combined into the normal tracking algorithm to catch the position of the vehicle on the trigger line. The experimental results show that the deep learning sliding window based trigger signal generating performance was 100% for the gate passing vehicles including the 5.5% trigger signal position errors due to the minimum bounding box location errors in the vehicle detection process.

An iterative method for damage identification of skeletal structures utilizing biconjugate gradient method and reduction of search space

  • Sotoudehnia, Ebrahim;Shahabian, Farzad;Sani, Ahmad Aftabi
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.45-60
    • /
    • 2019
  • This paper is devoted to proposing a new approach for damage detection of structures. In this technique, the biconjugate gradient method (BCG) is employed. To remedy the noise effects, a new preconditioning algorithm is applied. The proposed preconditioner matrix significantly reduces the condition number of the system. Moreover, based on the characteristics of the damage vector, a new direct search algorithm is employed to increase the efficiency of the suggested damage detection scheme by reducing the number of unknowns. To corroborate the high efficiency and capability of the presented strategy, it is applied for estimating the severity and location of damage in the well-known 31-member and 52-member trusses. For damage detection of these trusses, the time history responses are measured by a limited number of sensors. The results of numerical examples reveal high accuracy and robustness of the proposed method.

A Study on Edge Detection Algorithm for Character Recognition (문자인식을 위한 에지검출 알고리즘에 관한 연구)

  • Lee, Chang-Young;Hwang, Yeong-Yeun;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.792-794
    • /
    • 2014
  • Character recognition is an image processing technique for obtaining the character information such as documents and automobile license plate and for this edge detection methods are commonly used. The previous edge detection methods are mostly applying the weighted value mask on the image and because it applies the same mask to the entire areas of the image, the processing results are somewhat insufficient. Therefore, this paper has proposed an edge detection algorithm by applying the weighted value mask considering the distribution and location of pixels to be suitable for the character recognition.

  • PDF

Robust appearance feature learning using pixel-wise discrimination for visual tracking

  • Kim, Minji;Kim, Sungchan
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.483-493
    • /
    • 2019
  • Considering the high dimensions of video sequences, it is often challenging to acquire a sufficient dataset to train the tracking models. From this perspective, we propose to revisit the idea of hand-crafted feature learning to avoid such a requirement from a dataset. The proposed tracking approach is composed of two phases, detection and tracking, according to how severely the appearance of a target changes. The detection phase addresses severe and rapid variations by learning a new appearance model that classifies the pixels into foreground (or target) and background. We further combine the raw pixel features of the color intensity and spatial location with convolutional feature activations for robust target representation. The tracking phase tracks a target by searching for frame regions where the best pixel-level agreement to the model learned from the detection phase is achieved. Our two-phase approach results in efficient and accurate tracking, outperforming recent methods in various challenging cases of target appearance changes.

Implementation of the Industrial Hazard Detection System using LoRa Network (LoRa 통신기반 산업재해감지시스템 구현)

  • Seo, Jung-Hoon;Kim, Nak-Hun;Hong, Sung-Yong
    • Journal of Information Technology Services
    • /
    • v.18 no.1
    • /
    • pp.141-151
    • /
    • 2019
  • To protect workers from industrial accidents, IoT hazard detection system using LoRa network was designed and fabricated. LoRa networks can operate with low power consumption, wide coverage, and low usage fees. The hazard detection system consists of a sensor unit, a transceiver module, a LoRa base station, ThingPlug, and a monitoring device. We have designed an optimal risk-determining algorithm that can send information quickly in a working environment. As measured by TTA, the implemented system has been found to be able to deliver the worker's location, ambient temperature, and carbon monoxide density to the administrator through the user interface. The implemented system showed a bit rate of 290bps and a maximum application range of 6 km.

State Machine and Downhill Simplex Approach for Vision-Based Nighttime Vehicle Detection

  • Choi, Kyoung-Ho;Kim, Do-Hyun;Kim, Kwang-Sup;Kwon, Jang-Woo;Lee, Sang-Il;Chen, Ken;Park, Jong-Hyun
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.439-449
    • /
    • 2014
  • In this paper, a novel vision-based nighttime vehicle detection approach is presented, combining state machines and downhill simplex optimization. In the proposed approach, vehicle detection is modeled as a sequential state transition problem; that is, vehicle arrival, moving, and departure at a chosen detection area. More specifically, the number of bright pixels and their differences, in a chosen area of interest, are calculated and fed into the proposed state machine to detect vehicles. After a vehicle is detected, the location of the headlights is determined using the downhill simplex method. In the proposed optimization process, various headlights were evaluated for possible headlight positions on the detected vehicles; allowing for an optimal headlight position to be located. Simulation results were provided to show the robustness of the proposed approach for nighttime vehicle and headlight detection.

Detection of voluminous gamma-ray source with a collimation beam geometry and comparison with peak efficiency calculations of EXVol

  • Kang, M.Y.;Sun, G.M.;Choi, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2601-2606
    • /
    • 2020
  • In this study, we expanded the performance of the existing EXVol code and performed empirical experiments and calculations. A high-resolution gamma spectroscopy system was constructed, and a standard point source and a standard volume source were measured with an HPGe detector with 43.1% relative efficiency. EXVol was verified by quantitative comparison of the detection efficiencies determined by measurements and calculations. To introduce the concept of the detector scanning that occurs in the actual measurement into the EXVol code, a collimator was placed between the source and detector. The detection efficiency was determined in the asymmetric arrangement of the source and detector with a collimator. A collimator made of lead with a diameter of 15 mm and a thickness of 50 mm was installed between the source and the detector to determine the detection efficiency at a specific location. The calculation result was contour plotted so that the distribution of detection efficiency could be visually confirmed. The relative deviation between the measurements and calculations for the coaxial and asymmetric structures was 10%, and that for the collimation structure was 20%. The results of this study can be applied to research using γ-ray measurements.

Real time Omni-directional Object Detection Using Background Subtraction of Fisheye Image (어안 이미지의 배경 제거 기법을 이용한 실시간 전방향 장애물 감지)

  • Choi, Yun-Won;Kwon, Kee-Koo;Kim, Jong-Hyo;Na, Kyung-Jin;Lee, Suk-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.766-772
    • /
    • 2015
  • This paper proposes an object detection method based on motion estimation using background subtraction in the fisheye images obtained through omni-directional camera mounted on the vehicle. Recently, most of the vehicles installed with rear camera as a standard option, as well as various camera systems for safety. However, differently from the conventional object detection using the image obtained from the camera, the embedded system installed in the vehicle is difficult to apply a complicated algorithm because of its inherent low processing performance. In general, the embedded system needs system-dependent algorithm because it has lower processing performance than the computer. In this paper, the location of object is estimated from the information of object's motion obtained by applying a background subtraction method which compares the previous frames with the current ones. The real-time detection performance of the proposed method for object detection is verified experimentally on embedded board by comparing the proposed algorithm with the object detection based on LKOF (Lucas-Kanade optical flow).

Circle Detection Using Its Maximal Symmetry Property

  • Koo, Ja Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.6
    • /
    • pp.21-28
    • /
    • 2016
  • Circle detection has long been studied as one of fundamental image processing applications. It is used in divers areas including industrial inspection, medial image analysis, radio astronomy data analysis, and other object recognition applications. The most widely used class of circle detection techniques is the circle Hough transform and its variants. Management of 3 dimensional parameter histogram used in these methods brings about spatial and temporal overheads, and a lot of studies have dealt the problem. This paper proposes a robust circle detection method using maximal symmetry property of circle. The basic idea is that if perpendicular bisectors of pairs of edges are accumulated in image space, center of circle is determined to be the location of highest accumulation. However, directly implementing the idea in image space requires a lot of calculations. The method of this paper reduces the number of calculations by mapping the perpendicular bisectors into parameter space, selecting small number of parameters, and mapping them inversely into image space. Test on 22 images shows the calculations of the proposed method is 0.056% calculations of the basic idea. The test images include simple circles, multiple circles with various sizes, concentric circles, and partially occluded circles. The proposed method detected circles in various situations successfully.