• Title/Summary/Keyword: location detection

Search Result 1,591, Processing Time 0.025 seconds

A Study on the UAV-based Vegetable Index Comparison for Detection of Pine Wilt Disease Trees (소나무재선충병 피해목 탐지를 위한 UAV기반의 식생지수 비교 연구)

  • Jung, Yoon-Young;Kim, Sang-Wook
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.201-214
    • /
    • 2020
  • This study aimed to early detect damaged trees by pine wilt disease using the vegetation indices of UAV images. The location data of 193 pine wilt disease trees were constructed through field surveys and vegetation index analyses of NDVI, GNDVI, NDRE and SAVI were performed using multi-spectral UAV images at the same time. K-Means algorithm was adopted to classify damaged trees and confusion matrix was used to compare and analyze the classification accuracy. The results of the study are summarized as follows. First, the overall accuracy of the classification was analyzed in order of NDVI (88.04%, Kappa coefficient 0.76) > GNDVI (86.01%, Kappa coefficient 0.72) > NDRE (77.35%, Kappa coefficient 0.55) > SAVI (76.84%, Kappa coefficient 0.54) and showed the highest accuracy of NDVI. Second, K-Means unsupervised classification method using NDVI or GNDVI is possible to some extent to find out the damaged trees. In particular, this technique is to help early detection of damaged trees due to its intensive operation, low user intervention and relatively simple analysis process. In the future, it is expected that the utilization of time series images or the application of deep learning techniques will increase the accuracy of classification.

Effect of Passive Layer to Improve Performance of Digital Dosimeter in Brachytherapy (방사선 근접치료 디지털 선량계의 성능 개선을 위한 Passive Layer의 효과)

  • Han, Moo-Jae;Yang, Seung-Woo;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.715-721
    • /
    • 2021
  • In radiation brachytherapy, the wrong source location may cause excessive dose to normal tissue. Therefore, research on digital dosimeters is being made to replace the analog detection method. Therefore, in this study, a lead (II) oxide (PbO) dosimeter applied with a passive layer (PL) was fabricated as a basic study to improve the dosimeter performance. Afterwards, reproducibility, linearity, and distance dependence were evaluated to analyze the performance of the Ir-192 source under irradiation conditions. The reproducibility of the PL-PbO dosimeter was 0.40%, which satisfies the evaluation criteria of 1.5%, and showed improved results compared to the PbO dosimeter. Linear function R2 showed excellent results as 0.9995, and slope analysis through regression analysis of the linear function was excellent in PL-PbO. The distance dependence of the PL-PbO dosimeter was +0.599 higher than that of PbO when the slope obtained through regression analysis of the power function was compared with the inverse square value. This study presents the effects and measurement variables according to the measurement configuration of the solid-state dosimeter, and can be used in various radiation detection fields.

Analysis of Geographic Network Structure by Business Relationship between Companies of the Korean Automobile Industry (한국 자동차산업의 기업간 거래관계에 의한 지리적 네트워크 구조 분석)

  • KIM, Hye-Lim;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.58-72
    • /
    • 2021
  • In July 2021, UNCTAD classified Korea as a developed country. After the Korean War in the 1950s, economic development was promoted despite difficult conditions, resulting in epoch-making national growth. However, in order to respond to the rapidly changing global economy, it is necessary to continuously study the domestic industrial ecosystem and prepare strategies for continuous change and growth. This study analyzed the industrial ecosystem of the automobile industry where it is possible to obtain transaction data between companies by applying complexity spatial network analysis. For data, 295 corporate data(node data) and 607 transaction data (link data) were used. As a result of checking the spatial distribution by geocoding the address of the company, the automobile industry-related companies were concentrated in the Seoul metropolitan area and the Southeastern(Dongnam) region. The node importance was measured through degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality, and the network structure was confirmed by identifying density, distance, community detection, and assortativity and disassortivity. As a result, among the automakers, Hyundai Motor, Kia Motors, and GM Korea were included in the top 15 in 4 indicators of node centrality. In terms of company location, companies located in the Seoul metropolitan area were included in the top 15. In terms of company size, most of the large companies with more than 1,000 employees were included in the top 15 for degree centrality and betweenness centrality. Regarding closeness centrality and eigenvector centrality, most of the companies with 500 or less employees were included in the top 15, except for automakers. In the structure of the network, the density was 0.01390522 and the average distance was 3.422481. As a result of community detection using the fast greedy algorithm, 11 communities were finally derived.

Low-cost Impedance Technique for Structural Health Monitoring (임피던스 기반 저비용 구조물 건전성 모니터링 기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.265-271
    • /
    • 2018
  • This paper presents a method for detecting damage to a structure at low cost using its impedance. The impedance technique is a typical method to detect local damage for structural health monitoring. This is a common technique for estimating damage by monitoring the electro-mechanical admittance signal of the structure. To apply this technique, an expensive impedance analyzer is generally used. On the other hand, it is necessary to develop a low-cost variant to effectively disseminate the technique. In this study, a method based on the transfer impedance using a function generator and digital multimeter, which are generally used in the laboratory instead of an impedance analyzer, was developed. That is, this technique estimates the damage by comparing the damage index using the amplitude ratio of the output voltage measured in the healthy and damaged state. A transfer impedance test was carried out on a steel specimen. By comparing the damage index, the presence of damage could be assessed reasonably. This study is a basic investigation of an impedance-based low-cost damage detection method that can be used effectively for structural health monitoring if supplemented with future research to estimate the damage location and severity.

Detection and Identification of Moving Objects at Busy Traffic Road based on YOLO v4 (YOLO v4 기반 혼잡도로에서의 움직이는 물체 검출 및 식별)

  • Li, Qiutan;Ding, Xilong;Wang, Xufei;Chen, Le;Son, Jinku;Song, Jeong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.141-148
    • /
    • 2021
  • In some intersections or busy traffic roads, there are more pedestrians in a specific period of time, and there are many traffic accidents caused by road congestion. Especially at the intersection where there are schools nearby, it is particularly important to protect the traffic safety of students in busy hours. In the past, when designing traffic lights, the safety of pedestrians was seldom taken into account, and the identification of motor vehicles and traffic optimization were mostly studied. How to keep the road smooth as far as possible under the premise of ensuring the safety of pedestrians, especially students, will be the key research direction of this paper. This paper will focus on person, motorcycle, bicycle, car and bus recognition research. Through investigation and comparison, this paper proposes to use YOLO v4 network to identify the location and quantity of objects. YOLO v4 has the characteristics of strong ability of small target recognition, high precision and fast processing speed, and sets the data acquisition object to train and test the image set. Using the statistics of the accuracy rate, error rate and omission rate of the target in the video, the network trained in this paper can accurately and effectively identify persons, motorcycles, bicycles, cars and buses in the moving images.

A Study for Generation of Artificial Lunar Topography Image Dataset Using a Deep Learning Based Style Transfer Technique (딥러닝 기반 스타일 변환 기법을 활용한 인공 달 지형 영상 데이터 생성 방안에 관한 연구)

  • Na, Jong-Ho;Lee, Su-Deuk;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.131-143
    • /
    • 2022
  • The lunar exploration autonomous vehicle operates based on the lunar topography information obtained from real-time image characterization. For highly accurate topography characterization, a large number of training images with various background conditions are required. Since the real lunar topography images are difficult to obtain, it should be helpful to be able to generate mimic lunar image data artificially on the basis of the planetary analogs site images and real lunar images available. In this study, we aim to artificially create lunar topography images by using the location information-based style transfer algorithm known as Wavelet Correct Transform (WCT2). We conducted comparative experiments using lunar analog site images and real lunar topography images taken during China's and America's lunar-exploring projects (i.e., Chang'e and Apollo) to assess the efficacy of our suggested approach. The results show that the proposed techniques can create realistic images, which preserve the topography information of the analog site image while still showing the same condition as an image taken on lunar surface. The proposed algorithm also outperforms a conventional algorithm, Deep Photo Style Transfer (DPST) in terms of temporal and visual aspects. For future work, we intend to use the generated styled image data in combination with real image data for training lunar topography objects to be applied for topographic detection and segmentation. It is expected that this approach can significantly improve the performance of detection and segmentation models on real lunar topography images.

Oil Spill Monitoring in Norilsk, Russia Using Google Earth Engine and Sentinel-2 Data (Google Earth Engine과 Sentinel-2 위성자료를 이용한 러시아 노릴스크 지역의 기름 유출 모니터링)

  • Minju Kim;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.311-323
    • /
    • 2023
  • Oil spill accidents can cause various environmental issues, so it is important to quickly assess the extent and changes in the area and location of the spilled oil. In the case of oil spill detection using satellite imagery, it is possible to detect a wide range of oil spill areas by utilizing the information collected from various sensors equipped on the satellite. Previous studies have analyzed the reflectance of oil at specific wavelengths and have developed an oil spill index using bands within the specific wavelength ranges. When analyzing multiple images before and after an oil spill for monitoring purposes, a significant amount of time and computing resources are consumed due to the large volume of data. By utilizing Google Earth Engine, which allows for the analysis of large volumes of satellite imagery through a web browser, it is possible to efficiently detect oil spills. In this study, we evaluated the applicability of four types of oil spill indices in the area of various land cover using Sentinel-2 MultiSpectral Instrument data and the cloud-based Google Earth Engine platform. We assessed the separability of oil spill areas by comparing the index values for different land covers. The results of this study demonstrated the efficient utilization of Google Earth Engine in oil spill detection research and indicated that the use of oil spill index B ((B3+B4)/B2) and oil spill index C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5) can contribute to effective oil spill monitoring in other regions with complex land covers.

A sea trial method of hull-mounted sonar using machine learning and numerical experiments (기계학습 및 수치실험을 활용한 선체고정형소나 해상 시운전 평가 방안)

  • Ho-seong Chang;Chang-hyun Youn;Hyung-in Ra;Kyung-won Lee;Dea-hwan Kim;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.293-304
    • /
    • 2024
  • In this paper, efficient and reliable methodologies for conducting sea trials to evaluate the performance of hull-mounted sonar systems is discussed. These systems undergo performance verification during ship construction via sea trials. However, the evaluation procedures often lack detailed consideration of variabilities in detection performance due to seabed topography, seasonal factors. To resolve this issue, temperature and salinity structure data were collected from 1967 to 2022 using ARGO floats and ocean observers data. The paper proposes an efficient and reliable sea trial method incorporating Bellhop modeling. Furthermore, a machine learning model applying a Physics-Informed Neural Networks was developed using the acquired data. This model predicts the sound speed profile at specific points within the sea trial area, reflecting seasonal elements of performance evaluation. In this study, we predicted the seasonal variations in sound speed structure during sea trial operations at a specific location within the trial area. We then proposed a strategy to account for the variability in detection performance caused by seasonal factors, using results from Bellhop modeling.

Automation of Online to Offline Stores: Extremely Small Depth-Yolov8 and Feature-Based Product Recognition (Online to Offline 상점의 자동화 : 초소형 깊이의 Yolov8과 특징점 기반의 상품 인식)

  • Jongwook Si;Daemin Kim;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.3
    • /
    • pp.121-129
    • /
    • 2024
  • The rapid advancement of digital technology and the COVID-19 pandemic have significantly accelerated the growth of online commerce, highlighting the need for support mechanisms that enable small business owners to effectively respond to these market changes. In response, this paper presents a foundational technology leveraging the Online to Offline (O2O) strategy to automatically capture products displayed on retail shelves and utilize these images to create virtual stores. The essence of this research lies in precisely identifying and recognizing the location and names of displayed products, for which a single-class-targeted, lightweight model based on YOLOv8, named ESD-YOLOv8, is proposed. The detected products are identified by their names through feature-point-based technology, equipped with the capability to swiftly update the system by simply adding photos of new products. Through experiments, product name recognition demonstrated an accuracy of 74.0%, and position detection achieved a performance with an F2-Score of 92.8% using only 0.3M parameters. These results confirm that the proposed method possesses high performance and optimized efficiency.

Study on Outlier Analysis Considering the Spatial Distribution of Intelligent Compaction Measurement Values (지능형 다짐값의 공간적 분포를 고려한 이상치 분석 기법 연구)

  • Chung, Taek-Kyu;Cho, Jin-Woo;Chung, Choong-Ki;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.91-103
    • /
    • 2024
  • In this study, we propose an outlier detection method that considers the spatial distribution of intelligent compaction measurement values (ICMVs) to address the high variability of ICMVs measured continuously across an entire construction area. The proposed method initially identified cases where the CMV at a specific location decreased despite an increase in the number of compaction passes. Among these, values that significantly differed from those measured within a 1.5-m radius were classified as outliers. Applying this method to CMV data obtained from field tests, we found that it effectively excluded the influence of changes in roller operating conditions unrelated to compaction quality while considering the inherent heterogeneity of the soil. However, after removing the outliers, the coefficient of variation of CMV (21.4%-26.3%) remained higher than the 20% suggested by relevant standards. Further field tests are needed to modify the proposed outlier detection method and to establish reasonable criteria for the variability of ICMV.