• Title/Summary/Keyword: location aware computing

Search Result 80, Processing Time 0.024 seconds

Inter-space Interaction Issues Impacting Middleware Architecture of Ubiquitous Pervasive Computing

  • Lim, Shin-Young;Helal, Sumi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.42-51
    • /
    • 2008
  • We believe that smart spaces, offering pervasive services, will proliferate. However, at present, those islands of smart spaces should be joined seamlessly with each other. As users move about, they will have to roam from one autonomous smart space to another. When they move into the new island of smart space, they should setup their devices and service manually or not have access to the services available in their home spaces. Sometimes, there will conflicts between users when they try to occupy the same space or use a specific device at the same time. It will also be critical to elder people who suffer from Alzheimer or other cognitive impairments when they travel from their smart space to other visited spaces (e.g., grocery stores, museums). Furthermore our experience in building the Gator Tech Smart House reveals to us that home residents generally do not want to lose or be denied all the features or services they have come to expect simply because they move to a new smart space. The seamless inter-space interaction requirements and issues are raised automatically when the ubiquitous pervasive computing system tries to establish the user's service environment by allocating relevant resources after the user moves to a new location where there are no prior settings for the new environment. In this paper, we raise and present several critical inter-space interactions issues impacting middleware architecture design of ubiquitous pervasive computing. We propose requirements for resolving these issues on seamless inter-space operation. We also illustrate our approach and ideas via a service scenario moving around two smart spaces.

Protocol Design for Opportunistic Direct M2M Communication in Wearable Computing Environment (웨어러블 단말과 이웃 단말 간 기회기반 직접 사물통신 프로토콜 설계)

  • Oh, Young-Ho;Lee, Jae-Shin;Kang, Soon-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.2
    • /
    • pp.151-163
    • /
    • 2014
  • The recent wearable device's applications concentrates on providing diverse services such as location based service, context aware service to the users. These various services are implemented by the interactions between the wearable device and the user. In the legacy system, the interaction requires certain explicit configuration from the user. If the user is unfamiliar with the IT technology, it will be impossible to get the wanted service. Therefore, a new autonomous communication concept among neighbor devices is essential for people who is unfamiliar with the IT technology. The implicit human computer interface enables the user to acquire the services, even though the user don't know the IT technology. In this paper, we propose two BLE based protocols (B-LIDx protocol, B-PniP). B-LIDx protocol is the protocol for locationing the mobile device in indoor. B-PniP is a zero-configure opportunistic direct M2M communication protocol between neighbor devices to achieve the autonomous communication concept with zero-configuration. The protocol's evaluations are performed by measuring the time for finding the location of a mobile device in actual environment and aligning the time spent in services using the B-PniP.

Design And Implementation of Zone Based Location Tracking System Using ZigBee in Indoor Environment (실내 환경에서 ZigBee를 이용한 Zone 기반 위치추적 시스템 설계 및 구현)

  • Nam, Jin-Woo;Chung, Yeong-Jee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1003-1006
    • /
    • 2009
  • Recently, Ubiquitous computing technology is increasing necessity for object recognition and a location tracking technology to meet various applications. The location tracking technology is the fundamental to the Context-Aware of users in Ubiquitous environment and its efficiency has to be improved using IEEE 802.15.4 ZigBee used in current infra such as ubiquitous sensor network. But because the IEEE 802.15.4 ZigBee protocol has limitation to apply location tracking technology such as ToA and TDoA, Zone-based Location Tracking technology using RSSI is needed. In this paper suggests RSSI-based 802.15.4 ZigBee local positioning protocol to support a positioning tracking service in Ubiqutous environment. And Zone-based location tracking system is designed for actual the indoor location tracking service.

  • PDF

Infrared-based User Location Tracking System for Indoor Environments (적외선 기반 실내 사용자 위치 추적 시스템)

  • Jung, Seok-Min;Jung, Woo-Jin;Woo, Woon-Tack
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.5
    • /
    • pp.9-20
    • /
    • 2005
  • In this paper, we propose ubiTrack, a system which tracks users' location in indoor environments by employing infrared-based proximity method. Most of recently developed systems have focussed on performance and accuracy. For this reason, they adopted the idea of centralized management, which gathers all information in a main system to monitor users' location. However, these systems raise privacy concerns in ubiquitous computing environments where tons of sensors are seamlessly embedded into environments. In addition, centralized systems also need high computational power to support multiple users. The proposed ubiTrack is designed as a passive mobile architecture to relax privacy problems. Moreover, ubiTrack utilizes appropriate area as a unit to efficiently track users. To achieve this, ubiTrack overlaps each sensing area by utilizing the TDM (Time-Division Multiplexing) method. Additionally, ubiTrack exploits various filtering methods at each receiver and utilization module. The filtering methods minimize unexpected noise effect caused by external shock or intensity weakness of ID signal at the boundary of sensing area. ubiTrack can be applied not only to location-based applications but also to context-aware applications because of its associated module. This module is a part of middleware to support communication between heterogeneous applications or sensors in ubiquitous computing environments.

The Student Safety Network Service System Using the Smart Device (스마트 디바이스를 이용한 학생안전 네트워크 서비스 시스템)

  • Ryu, Chang-Su;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2213-2218
    • /
    • 2013
  • Smart devices such as smart phone, smart TV, tablet, game consoles embrace all categories of Intelligent Communication Device, which enables intelligent applications to be developed, by up loading Context-aware Computing technology that recognizes and reacts nearby diverse phenomena and composing these information, as well as their basic functions. This paper, after saving pre-registered students' movement course and business places harmful to them into students safety network service system, by using location-based service and searching students' movement, considering the degree of breaking away from their regular course, the access to and their stay in crime-crone area, provides the comparative analysis of the system and suggests the ways for safe students guidance.

An Adaptable Destination-Based Dissemination Algorithm Using a Publish/Subscribe Model in Vehicular Networks

  • Morales, Mildred Madai Caballeros;Haw, Rim;Cho, Eung-Jun;Hong, Choong-Seon;Lee, Sung-Won
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.3
    • /
    • pp.227-242
    • /
    • 2012
  • Vehicular Ad Hoc Networks (VANETs) are highly dynamic and unstable due to the heterogeneous nature of the communications, intermittent links, high mobility and constant changes in network topology. Currently, some of the most important challenges of VANETs are the scalability problem, congestion, unnecessary duplication of data, low delivery rate, communication delay and temporary fragmentation. Many recent studies have focused on a hybrid mechanism to disseminate information implementing the store and forward technique in sparse vehicular networks, as well as clustering techniques to avoid the scalability problem in dense vehicular networks. However, the selection of intermediate nodes in the store and forward technique, the stability of the clusters and the unnecessary duplication of data remain as central challenges. Therefore, we propose an adaptable destination-based dissemination algorithm (DBDA) using the publish/subscribe model. DBDA considers the destination of the vehicles as an important parameter to form the clusters and select the intermediate nodes, contrary to other proposed solutions. Additionally, DBDA implements a publish/subscribe model. This model provides a context-aware service to select the intermediate nodes according to the importance of the message, destination, current location and speed of the vehicles; as a result, it avoids delay, congestion, unnecessary duplications and low delivery rate.

Cooperation-Aware VANET Clouds: Providing Secure Cloud Services to Vehicular Ad Hoc Networks

  • Hussain, Rasheed;Oh, Heekuck
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.103-118
    • /
    • 2014
  • Over the last couple of years, traditional VANET (Vehicular Ad Hoc NETwork) evolved into VANET-based clouds. From the VANET standpoint, applications became richer by virtue of the boom in automotive telematics and infotainment technologies. Nevertheless, the research community and industries are concerned about the under-utilization of rich computation, communication, and storage resources in middle and high-end vehicles. This phenomenon became the driving force for the birth of VANET-based clouds. In this paper, we envision a novel application layer of VANET-based clouds based on the cooperation of the moving cars on the road, called CaaS (Cooperation as a Service). CaaS is divided into TIaaS (Traffic Information as a Service), WaaS (Warning as a Service), and IfaaS (Infotainment as a Service). Note, however, that this work focuses only on TIaaS and WaaS. TIaaS provides vehicular nodes, more precisely subscribers, with the fine-grained traffic information constructed by CDM (Cloud Decision Module) as a result of the cooperation of the vehicles on the roads in the form of mobility vectors. On the other hand, WaaS provides subscribers with potential warning messages in case of hazard situations on the road. Communication between the cloud infrastructure and the vehicles is done through GTs (Gateway Terminals), whereas GTs are physically realized through RSUs (Road-Side Units) and vehicles with 4G Internet access. These GTs forward the coarse-grained cooperation from vehicles to cloud and fine-grained traffic information and warnings from cloud to vehicles (subscribers) in a secure, privacy-aware fashion. In our proposed scheme, privacy is conditionally preserved wherein the location and the identity of the cooperators are preserved by leveraging the modified location-based encryption and, in case of any dispute, the node is subject to revocation. To the best of our knowledge, our proposed scheme is the first effort to offshore the extended traffic view construction function and warning messages dissemination function to the cloud.

Cooperative Positioning System Using Density of Nodes (노드의 밀도를 이용한 상호 협력 위치 측정 시스템)

  • Son, Cheol-Su;Yoo, Nem-Hyun;Kim, Wong-Jung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.198-205
    • /
    • 2007
  • In ubiquitous environment a user can be provided with context-aware services based on his or her current location, time, and atmosphere. LBS(Location-Based Services) play an important role for ubiquitous context-aware computing. Because deployment and maintenance of this specialized equipment is costly, many studies have been conducted on positioning using only wireless equipment under a wireless LAN infrastructure. Because a CPS(Cooperative Positioning System) that uses the RSSI (Received Signal Strength Indicator) between mobile equipments is more accurate than beacon based positioning system, it requires great concentration in its applications. This study investigates the relationship between nodes by analyzing a WiPS (Wireless LAN indoor Positioning System), a similar type of CPS, and proposes a improved WiCOPS-d(Wireless Cooperative Positioning System using node density) to increase performance by determining the convergence adjustment factor based on node density.

AR-based Message Annotation System for Personalized Assistance (개인화된 도움을 위한 증강현실기반 메시지 주석시스템)

  • Vinh, Nguyen Van;Jun, Hee-Sung
    • The KIPS Transactions:PartB
    • /
    • v.16B no.6
    • /
    • pp.435-442
    • /
    • 2009
  • We propose an annotation system, which allows users moving on an environment to receive personalized messages that are generated by exploiting contextual information. In the system, the context is defined as an entity including user's identity, location and time. Identity of user is a key data to enable personal aspect of generated message. For sensing the context, the proposed system uses AR(augmented reality) technology. Markers are attached to real objects for tracking user's location. AR can provide an effective annotating method to enhance human's perception and interaction abilities. The received message can be a virtual post-it or three-dimensional virtual model of object overlaid onto the real-world view. Experimental results show that the proposed system works well in real-time with high performance and it can be used as a mobile service for personalized messaging.

Friendship Influence on Mobile Behavior of Location Based Social Network Users

  • Song, Yang;Hu, Zheng;Leng, Xiaoming;Tian, Hui;Yang, Kun;Ke, Xin
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.126-132
    • /
    • 2015
  • In mobile computing research area, it is highly desirable to understand the characteristics of user movement so that the user friendly location aware services could be rendered effectively. Location based social networks (LBSNs) have flourished recently and are of great potential for movement behavior exploration and datadriven application design. While there have been some efforts on user check-in movement behavior in LBSNs, they lack comprehensive analysis of social influence on them. To this end, the social-spatial influence and social-temporal influence are analyzed synthetically in this paper based on the related information exposed in LBSNs. The check-in movement behaviors of users are found to be affected by their social friendships both from spatial and temporal dimensions. Furthermore, a probabilistic model of user mobile behavior is proposed, incorporating the comprehensive social influence model with extent personal preference model. The experimental results validate that our proposed model can improve prediction accuracy compared to the state-of-the-art social historical model considering temporal information (SHM+T), which mainly studies the temporal cyclic patterns and uses them to model user mobility, while being with affordable complexity.