• Title/Summary/Keyword: location assessment

Search Result 751, Processing Time 0.03 seconds

Optimization of SWAN Wave Model to Improve the Accuracy of Winter Storm Wave Prediction in the East Sea

  • Son, Bongkyo;Do, Kideok
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.273-286
    • /
    • 2021
  • In recent years, as human casualties and property damage caused by hazardous waves have increased in the East Sea, precise wave prediction skills have become necessary. In this study, the Simulating WAves Nearshore (SWAN) third-generation numerical wave model was calibrated and optimized to enhance the accuracy of winter storm wave prediction in the East Sea. We used Source Term 6 (ST6) and physical observations from a large-scale experiment conducted in Australia and compared its results to Komen's formula, a default in SWAN. As input wind data, we used Korean Meteorological Agency's (KMA's) operational meteorological model called Regional Data Assimilation and Prediction System (RDAPS), the European Centre for Medium Range Weather Forecasts' newest 5th generation re-analysis data (ERA5), and Japanese Meteorological Agency's (JMA's) meso-scale forecasting data. We analyzed the accuracy of each model's results by comparing them to observation data. For quantitative analysis and assessment, the observed wave data for 6 locations from KMA and Korea Hydrographic and Oceanographic Agency (KHOA) were used, and statistical analysis was conducted to assess model accuracy. As a result, ST6 models had a smaller root mean square error and higher correlation coefficient than the default model in significant wave height prediction. However, for peak wave period simulation, the results were incoherent among each model and location. In simulations with different wind data, the simulation using ERA5 for input wind datashowed the most accurate results overall but underestimated the wave height in predicting high wave events compared to the simulation using RDAPS and JMA meso-scale model. In addition, it showed that the spatial resolution of wind plays a more significant role in predicting high wave events. Nevertheless, the numerical model optimized in this study highlighted some limitations in predicting high waves that rise rapidly in time caused by meteorological events. This suggests that further research is necessary to enhance the accuracy of wave prediction in various climate conditions, such as extreme weather.

Evaluation of Internal through Analysis of Airflow and Ventilation of Coal Storage Shed (옥내저탄장 기류 흐름 및 환기량 분석을 통한 내부 유동 평가)

  • Jo, Hyun-Joung;Lee, Jin-Hong
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.5
    • /
    • pp.334-342
    • /
    • 2022
  • The stringent air environment conservation act forced to build an indoor dome for coal storage. However, it causes some problems due to accumulation of fly ash and harmful substances inside. To solve this problem, this study analyzed the pattern of internal airflow and the amount of ventilation for an indoor coal yard. Overall, the airflow inside the indoor coal yard tended to move to the southwest facing the mountain. In addition, sea-breeze was blowing from the northern louver window facing the sea, where airflow was flowing in. The total flow rate flowing into the indoor coal yard was 918,691 m3/h, and the number of natural ventilation per hour was 0.6 times. Therefore, it is proposed to install a forced ventilation device at the location where internal air flow is concentrated.

Critical Hazard Factors in the Risk Assessments of Industrial Robots: Causal Analysis and Case Studies

  • Lee, Kangdon;Shin, Jaeho;Lim, Jae-Yong
    • Safety and Health at Work
    • /
    • v.12 no.4
    • /
    • pp.496-504
    • /
    • 2021
  • Background: With the increasing demand for industrial robots and the "noncontact" trend, it is an appropriate point in time to examine whether risk assessments conducted for robot operations are performed effectively to identify and eliminate the risks of injury or harm to operators. This study discusses why robot accidents resulting in harm to operators occur repetitively despite implementing control measures and proposes corrective actions for risk assessments. Methods: This study collected 369 operator-injured robot accidents in Korea over the last decade and reconstructed them into the mechanism of injury, work being undertaken, and bodily location of the injury. Then, through the techniques of Systematic Cause Analysis Technique (SCAT) and Root Cause Analysis (RCA), this study analyzed the root and direct causes of robot accidents that had occurred. Causes identified included physical hazards and complex combinations of hazards, such as psychological, organizational, and systematic errors. The requirements of risk assessments regarding robot operations were examined, and three case studies of robot-involved tasks were investigated. The three assessments presented were: camera module processing, electrical discharge machining, and a panel-flipping robot installation. Results: After conducting RCA and comparing the three assessments, it was found that two-thirds of injury-occurring from robot accidents, causative factors included psychological and personal traits of robot operators. However, there were no evaluations of the identifications of personal aspects in the three assessment cases. Conclusion: Therefore, it was concluded that personal factors of operators, which had been overlooked in risk assessments so far, need to be included in future risk assessments on robot operations.

Design and Implementation of the Farm-level Data Acquisition System for the Behavior Analysis of Livestocks (가축의 행동 분석을 위한 농장 수준의 데이터 수집 시스템 설계와 구현)

  • Park, Gi-Cheol;Han, Su-Young
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.117-124
    • /
    • 2021
  • Livestock behavioral analysis is a factor that has a great influence on livestock health management and agricultural productivity increase. However, most digital devices introduced for behavioral analysis of livestock do not provide raw data and also provide limited analysis results. Such a closed system makes it more difficult to integrate data and build big data, which are essential for the introduction of advanced IT technologies. Therefore, it is necessary to supply farm-scale data collection devices that can be easily used at low cost. This study presents a data collection system for analyzing the behavior of livestock. The system consists of a number of miniature computing units that operate wirelessly, and collects livestock body temperature and acceleration data, location information, and livestock environment data. In addition, this study presents an algorithm for estimating the behavior of livestock based on the collected acceleration data. For the experiment, a system was built in a Korean cattle farm in Icheon, Gyeonggi-do, and data were collected for 20 Korean cattle, and based on this, the empirical and analysis results were presented.

The AI Promotion Strategy of Korea Defense for the AI Expansion in Defense Domain (국방분야 인공지능 저변화를 위한 대한민국 국방 인공지능 추진전략)

  • Lee, Seung-Mok;Kim, Young-Gon;An, Kyung-Soo
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.59-73
    • /
    • 2021
  • Recently, artificial intelligence has spread rapidly and popularized and expanded to the voice recognition personal service sector, and major countries have established artificial intelligence promotion strategies, but in the case of South Korea's defense domain, its influence is low with a geopolitical location with North Korea. This paper presents a total of six strategies for promoting South Korea's defense artificial intelligence, including establishing roadmaps, securing manpower, installing the artificial intelligence base, and strengthening cooperation among stakeholders in order to increase the impact of South Korea's defense artificial intelligence and successfully promote artificial intelligence. These suggestions are expected to establish the foundation for expanding the base of artificial intelligence.

Engineering Critical Assessement for an Independent Type-B LNG Cargo Tank (독립형 LNG 화물창의 공학적 결함 평가)

  • Jae Hoon Seo;Kyu-Sik Park;Inhwan Cha;Joonmo Choung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.213-221
    • /
    • 2023
  • The demand for Liquefied Natural Gas (LNG) carriers and LNG-fueled ships has significantly increased in recent years due to the sulfur-oxide emission regulations by the International Maritime Organization (IMO). The main goal of this paper is to introduce the process for the Engineering Critical Assessment (ECA) of IMO independent type-B cargo tanks made from 9% nickel alloy. A methodology proposed by the British Standard was used to conduct ECA for any structure with initial flaws. Based on this standard, a Matlab code was developed to perform ECA. Coarse mesh Finite Element Analysis (FEA) was performed on an independent type-B LNG cargo tank with a capacity of 15,000 m3. The location with the highest development of maximum principal stress was identified at the bottom of the cargo tank. Fine mesh FEA was performed to obtain the stress range required for ECA. The dynamic cargo tank loads used for FEA were determined using some ship rules presented by Det Norske Veritas. As a result of performing a 20-year long-term crack propagation analysis with a semi-elliptical surface crack, the fracture-to-yield ratio exceeded the Fracture Assessment Line (FAL) and some structural reinforcement was necessary. Performing a 15-day short-term crack propagation analysis, the fracture-to-yield ratio remained within the FAL, and no significant LNG leaks were expected. This paper is believed to provide a guide for performing ECA of LNG cargo tanks in the future by providing the basic theory and application sample necessary to perform ECA.

Spatio-Temporal Variations of Paddy and Water Salinity of Gunnae Reclaimed Tidelands in Western Coastal Area of Korea (서해안 군내간척지 담수호 및 농경지 염류의 시공간적 분포 특성 분석)

  • Beom, Jina;Jeung, Minhyuk;Park, Hyun-Jin;Choi, Woo-Jung;Kim, YeongJoo;Yoon, Kwang Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • To understand salinity status of fresh water and paddy soils and the susceptibility of rice to salinity stress of Gunnae reclaimed tidelands, salinity monitoring was conducted in rainy and dry seasons. For fresh water, a high salinity was observed at the sampling location near the sluice gate and decreased with distance from the gate. This spatial pattern of fresh water salinity indicates the necessity of spatial distribution of salinity in the assessment of salinity status of fresh water. Interestingly, there was significant correlation between rainfall amount and salinity, implying that salinity of fresh water varies with rainfall and thus it may be possible to predict salinity of water using rainfall. Soil salinity also higher near the gate, reflecting the influence of high saline water. In addition, the groundwater salinity also high to threat rice growth. Though soil salinity status indicated low possibility of sodium injury, there was changes in soil salinity status during the course of rice growth, suggesting that more intensive monitoring of soil salinity may be necessary for soil salinity assessment. Our study suggests the necessity of intensive salinity monitoring to understand the spatio-temporal variations of salinity of water and soil of reclaimed tideland areas.

A Prototype of Distributed Simulation for Facility Restoration Operation Analysis through Incorporation of Immediate Damage Assessment

  • Hwang, Sungjoo;Choi, MinJi;Starbuck, Richmond;Lee, SangHyun;Park, Moonseo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.339-343
    • /
    • 2015
  • To rapidly recover ceased functionality of a facility after a catastrophic seismic event, critical decisions on facility repair works are made within a limited period of time. However, prolonged damage assessment of facilities, due to massive damage in the surrounding region and the complicated damage judgment procedures, may impede restoration planning. To assist reliable structural damage estimation without a deep knowledge and rapid interactive analysis among facility damage and restoration operations during the approximate restoration project planning phase, we developed a prototype of distributed facility restoration simulations through the use of high-level architecture (HLA) (IEEE 1516). The simulation prototype, in which three different simulations (including a seismic data retrieval technique, a structural response simulator, and a restoration simulation module) interact with each other, enables immediate damage estimation by promptly detecting earthquake intensity and the restoration operation analysis according to estimated damage. By conducting case simulations and experiments, research outcomes provide key insights into post-disaster restoration planning, including the extent to which facility damage varies according to disaster severity, facility location, and structures. Additional insights arise regarding the extent to which different facility damage patterns impact a project's performance, especially when facility damage is hard to estimate by observation. In particular, an understanding of required type and amount of repair activities (e.g., demolition works, structural reinforcement, frame installation, or finishing works) is expected to support project managers in approximate work scheduling or resource procurement plans.

  • PDF

Competitiveness of 'Saemi' in Sacheon Alluvial Fan as a Cultural-ecological Niche (문화생태적 적소로서 사천 선상지 '새미'의 경쟁력)

  • Dohyun Kim;Myeongcheol Jeong;Kichun Seo
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.516-532
    • /
    • 2023
  • This study is the result of analyzing the distribution of 129 Saemies discovered based on field research conducted from September 2021 to June 2023 in the Sacheon alluvial fan area through ethnoscience and niche theory. The researcher viewed the Sacheon alluvial fan area as a suitable location for irrigation where both traditional and modern hydraulic facilities are used, and the cultural and ecological study of 'Saemi', a traditional irrigation facility that attracts attention for its public value for the ecological environment according to the sustainable paradigm. By revealing its competitiveness, we aimed to contribute to finding ways to sustainably conserve and utilize Saemi. As a result of the study, Saemi is confirmed to be a competitive water facility in terms of cultural and ecological quality, considering the direction of the times and the sustainable development. If environment-friendly agricultural technology is applied to traditional water treatment facilities in the context of sustainable agriculture, it is expected that synergy will be created in productivity, public interest, and sustainability.

A Study on the Development for Prediction Model of Blasting Noise and Vibration During Construction in Urban Area (도시지역 공사 시 발파 소음·진동 예측식 개발에 관한 연구)

  • Jinuk Kwon;Naehyun Lee;Jeongha Woo
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.2
    • /
    • pp.84-98
    • /
    • 2024
  • This study proposed a prediction equation for the estimation of blasting vibaration and blasting noise, utilizing 320 datasets for the blasting vibration and blasting noise acquired during urban blasting works in the Incheon, Suwon, Wonju, and Yangsan regions. The proposed blasting vibration prediction equation, derived from regression analysis, indicated correlation coefficients of 0.879 and 0.890 for SRSD and CRSD, respectively, with an R2 value exceeding 0.7. In the case of the blasting noise prediction equation, stepwise regression analysis yielded a correlation coefficient of 0.911 between the prediction values and real measurements for the blasting nosie, and further analysis to determine the constant value revealed a correlation coefficient of 0.881, with an R2 value also exceeding 0.7. These results suggest the feasibility of applying the proposed prediction equations when environmental impact assessments or education environment evaluation according to urban development or apartment construction projects is performed.