• 제목/요약/키워드: locally symmetric space

검색결과 24건 처리시간 0.172초

BIRECURRENT HYPERSURFACES OF A RIEMANNIAN MANIFOLD WITH CONSTANT CURVATURE

  • Choe, Yeong-Wu
    • 대한수학회보
    • /
    • 제26권2호
    • /
    • pp.159-164
    • /
    • 1989
  • Let M be a hypersurface of dimension n(.geq.2) in an (n+1)-dimensional real space form over bar M(c) with constant curvature c and H the second fundamental tensor of M. M is said to be birecurrent if here exists a covariant tensor field .alpha. of order 2 such that .del.$^{2}$H=H .alpha., where .del. is the connection of M. Also, M is said to be recurrent if there exists a 1-form .betha. such that .del.H=H .betha.. Matsuyama [2] recently proved that a recurrent hypersurface M in a real space form is locally symmetric and a complete irreducible birecurrent hypersurface M in a real space form is recurrent. The main purpose of this paper is to characterize the birecurrent or recurrent hypersurface M of a Riemannian manifold with constant curvature c and to prove that M is classified as a cylinder, $M^{n}$ (c) or ( $c_{1}$)* $M^{n-r}$ ( $c_{2}$) where 1/ $c_{1}$+1/ $c_{2}$=1/c.

  • PDF

ON DIFFERENTIAL INVARIANTS OF HYPERPLANE SYSTEMS ON NONDEGENERATE EQUIVARIANT EMBEDDINGS OF HOMOGENEOUS SPACES

  • HONG, JAEHYUN
    • 대한수학회논문집
    • /
    • 제30권3호
    • /
    • pp.253-267
    • /
    • 2015
  • Given a complex submanifoldM of the projective space $\mathbb{P}$(T), the hyperplane system R on M characterizes the projective embedding of M into $\mathbb{P}$(T) in the following sense: for any two nondegenerate complex submanifolds $M{\subset}\mathbb{P}$(T) and $M^{\prime}{\subset}\mathbb{P}$(T'), there is a projective linear transformation that sends an open subset of M onto an open subset of M' if and only if (M,R) is locally equivalent to (M', R'). Se-ashi developed a theory for the differential invariants of these types of systems of linear differential equations. In particular, the theory applies to systems of linear differential equations that have symbols equivalent to the hyperplane systems on nondegenerate equivariant embeddings of compact Hermitian symmetric spaces. In this paper, we extend this result to hyperplane systems on nondegenerate equivariant embeddings of homogeneous spaces of the first kind.

와류 현상을 이용하는 호흡기류센서 (Respiratory air Flow Transducer Based on air Turbulence)

  • 김경아;이인광;박준오;이수옥;신은영;김윤기;김경천;차은종
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권5호
    • /
    • pp.393-400
    • /
    • 2009
  • The present study developed a new technique with no physical object on the flow stream but enabling the air flow measurement and easily incorporated with the devices for cardiopulmonary resuscitation(CPR) procedure. A turbulence chamber was formed in the middle of the respiratory tube by locally enlarging the cross-sectional area where the flow related turbulence was generated inducing energy loss which was in turn converted into pressure difference. The turbulence chamber was simply an empty enlarged air space, thus no physical object existed on the flow stream, but still the flow rate could be evaluated. Computer simulation demonstrated stable turbulence formation big enough to measure. Experiment was followed on the proto-type transducer, the results of which were within ${\pm}5%$ error compared to the simulation data. Both inspiratory and expiratory flows were obtained with symmetric measurement characteristics. Quadratic curve fitting provided excellent calibration formula with a correlation coefficient>0.999(P<0.0001) and the mean relative error<1%. The present results can be usefully applied to accurately monitor the air flow rate during CPR.

호흡경로 상에 감지소자가 없는 새로운 호흡기류 계측기술 (Respiratory air flow measuring technique without sensing element on the flow stream)

  • 이인광;박준오;이수옥;신은영;김경천;김경아;차은종
    • 센서학회지
    • /
    • 제18권4호
    • /
    • pp.294-300
    • /
    • 2009
  • Cardiopulmonary resuscitation(CPR) is performed by artificial ventilation and thoracic compression for the patient under emergent situation to maintain at least the minimum level of respiration and blood circulation for life survival. Quality of the pre-hospital CPR not only significantly affects the patient's survival rate but also minimizes side effects caused by CPR. Good quality CPR requires monitoring respiration, however, traditional respiratory air flow transducers cannot be used because the transducer elements are located on the flow axis. The present study developed a new technique with no physical object on the flow stream but enabling the air flow measurement and easily incorporated with the CPR devices. A turbulence chamber was formed in the middle of the respiratory tube by locally enlarging the cross-sectional area where the flow related turbulence was generated inducing energy loss which was in turn converted into pressure difference. The turbulence chamber was simply an empty enlarged air space, thus no physical object was placed on the flow stream, but still the flow rate could be evaluated. Both inspiratory and expiratory flows were obtained with symmetric measurement characteristics. Quadratic curve fitting provided excellent calibration formula with a correlation coefficient>0.999 (P<0.0001) and the mean relative error<1 %. The present results can be usefully applied to accurately monitor the air flow rate during CPR.