• Title/Summary/Keyword: localized states

Search Result 79, Processing Time 0.038 seconds

2-Dimensional Numerical Simulation of Inverted-staggered type Amorphous Silicon TFT (비정질 실리콘 박막 트랜지스터의 2차원적 수치 해석)

  • Joo, In-Su;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.257-260
    • /
    • 1991
  • The current-voltage characteristics of inverted-ataggered type a-Si TFT has been successfully obtained by 2-D simulation using Finite Difference Method. Potential and charge distibutions in a-Si TFT's has been calculated by considering localized states in the forbidden gap. The results of numerical simulation have good agreement with the our experimental data.

  • PDF

Some Peculiarities of Photo-structural Transformations in Amorphous Chalcogenide Glassy Semiconductor Films

  • Prikhodko, O.;Almasov, N.;Korobova, Natalya
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.587-590
    • /
    • 2011
  • The absence of deep traps for electrons in the spectrum of $As_{40}Se_{30}S_30$ localized states films obtained by ion sputtering was determined. Bipolar drift of charge carriers was found in amorphous $As_{40}Se_{30}S_30$ films of chalcogenide glassy semiconductors, obtained by ion-plasma sputtering of high-frequency, unlike the films of these materials obtained by thermal evaporation.

Hole-Trapping in Iodine-Doped Pentacene Films at Low Temperatures

  • Yun, W.J.;Cho, J.M.;Lee, J.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.70-73
    • /
    • 2006
  • Pentacene films, grown on polyethylene terephthalate (PET) substrates, were doped with Iodine. ESR measurements were made for the films in the temperature range of 100-300 K. Two regimes of doping stages were discernible: a light (intercalation) doping regime and a heavy doping regime. The light doping regime was concluded to be dominated by localized holes that were trapped at low temperatures, which indicated trap states near the valence band edge.

  • PDF

Transition Probabilities at Crossing in the Landau-Zener Problem

  • Park, Tae-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1735-1737
    • /
    • 2005
  • We obtain probabilities at a crossing of two linearly time-dependent potentials that are constantly coupled to the other by solving a time-dependent Schrödinger equation. We find that the system which was initially localized at one state evolves to split into both states at the crossing. The probability splitting depends on the coupling strength $V_0$ such that the system stays at the initial state in its entirety when $V_0$ = 0 while it is divided equally in both states when $V_0 \rightarrow {\infty}$ . For a finite coupling the probability branching at the crossing is not even and thus a complete probability transfer at $t \rightarrow {\infty}$ is not achieved in the linear potential crossing problem. The Landau-Zener formula for transition probability at $t \rightarrow {\infty}$ is expressed in terms of the probabilities at the crossing.

Length- and parity-dependent electronic states in one-dimensional carbon atomic chains on C(111)

  • Kim, Hyun-Jung;Oh, Sang-Chul;Kim, Ki-Seok;Zhang, Zhenyu;Cho, Jun-Hyung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.56-56
    • /
    • 2010
  • Using first-principles density-functional theory calculations, we find dramatically different electronic states in the C chains generated on the H-terminated C(111) surface, depending on their length and parity. The infinitely long chain has $\pi$ electrons completely delocalized over the chain, yielding an equal C-C bond length. As the chain length becomes finite, such delocalized $\pi$ electrons are transformed into localized ones. As a result, even-numbered chains exhibit a strong charge-lattice coupling, leading to a bond-alternated structure, while odd-numbered chains show a ferrimagnetic spin ordering with a solitonlike structure. These geometric and electronic features of infinitely and finitely long chains are analogous to those of the closed (benzene) and open (polyacetylene) chains of hydrocarbons, respectively.

  • PDF

Field Emission of Carbon Nanotubes

  • Ihm, Ji-Soon;Han, Seung-Wu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.235-238
    • /
    • 2000
  • We have performed ab initio pseudopotential electronic structure calculations for various edge geometries of the (n,n) singlewall nanotube with on without applied fields. Among the systems studied, the one with the zigzag edge exposed by a slant out is found to be the most favorable for the emission due to the existence of unpaired dangling bond states around the Fermi level. The next favorable geometry is the capped nanotube where ${\pi}-bonding$ states localized at the cap and pointing to We tube axis direction occur at the Fermi level. A scaling rule of the induced field linean in the aspect ratio of the tube is also obtained.

  • PDF

Chemical Substitution Effect on Energetic and Structural Differences between Ground and First Electronically Excited States of Thiophenoxyl Radicals

  • Yoon, Jun-Ho;Lim, Jeong Sik;Woo, Kyung Chul;Kim, Myung Soo;Kim, Sang Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.415-420
    • /
    • 2013
  • Effect of chemical substitution at the para-position of the thiophenoxyl radical has been theoretically investigated in terms of energetics, structures, charge densities and orbital shapes for the ground and first electronically excited states. It is found that the adiabatic energy gap increases when $CH_3$ or F is substituted at the para-position. This change is attributed to the stabilization of the ground state of thiophenoxyl radical through the electron-donating effect of F or $CH_3$ group as the charge or spin of the singly-occupied molecular orbital is delocalized over the entire molecule especially in the ground state whereas in the excited state it is rather localized on sulfur and little affected by chemical substitutions. Quantitative comparison of predictions based on four different quantum-mechanical calculation methods is presented.

Field Emission of Carbon Nanotubes

  • Ihm, Jisoon;Han, Seungwu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.1-4
    • /
    • 2000
  • We have performed ab initio pseudopotential electronic structure calculations for various edge geometries of the (n,n) singlewall nanotube with or without applied fields. Among the systems studied, the one with the zigzag edge exposed by a slant cut is found to be the most favorable for the emission due to the existence of unpaired dangling bond states around the Fermi level. The next favorable geometry is the capped nanotube where $\pi$-bonding states localized at the cap and pointing to the tube axis direction occur at the Fermi level. A scaling rule of the induced field linear in the aspect ratio of the tube is also obtained.

  • PDF

Lattice Deformation and Electronic Structure of the $C_{60}{^+}$ Cation

  • 이기학;이한명;전희자;박성수;이왕로;Park, T. Y.;Xin Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.452-457
    • /
    • 1996
  • The effects caused by the ionization on the electronic structure and geometry on C60 are studied by the modified Su-Schriffer-Heeger (SSH) model Hamiltonian. After the ionization of C60, the bond structure of the singly charged C60 cation is deformed from Ih symmetry of the neutral C60 to D5d, C1, and C2, which is dependent upon the change of the electron-phonon coupling strength. The electronic structure of the C60+ cation ground state undergoes Jahn-Teller distortion in the weak electron-phonon coupling region, while self-localized states occur in the intermediate electron-phonon region, but delocalized electronic states appear again in the strong electron-phonon region. In the realistic strength of the electron-phonon coupling in C60, the bond structure of C60+ shows the layer structure of the bond distortion and a polaron-like state is formed.

Strong Correlation Effect by the Rare Earth Substitution on Thermoelectric Material Bi2Te3 ; in GGA+U Approach

  • Quang, Tran Van;Kim, Miyoung
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.05a
    • /
    • pp.19-20
    • /
    • 2013
  • Thermoelectic properties of the typical thermoelectric host materials, the tellurides and selenides, are known to be noticeably changed by their volume change due to the strain [1]. In the bismuth telluride ($Bi_2Te_3$) crystal, a substitution of rare-earth element by replacing one of the Bi atoms may cause the change of the lattice parameters while remaining the rhombohedral structure of the host material. Using the first-principles approach by the precise full potential linearized augmented plane wave (FLAPW) method [2], we investigated the Ce substitution effect on the thermoelectric transport coefficients for the bismuth telluride, employing Boltzmann's equation in a constant relaxation-time approach fed with the FLAPW wave-functions within the rigid band approximation. Depending on the real process of re-arrangement of atoms in the cell to reach the equilibrium state, $CeBiTe_3$ was found to manifest a metal or a narrow bandgap semiconductor. This feature along with the strong correlation effect originated by the 4f states of Ce affect significantly on the thermoelectric properties. We showed that the position of the strongly localized f-states in energy scale (Fig. 1, f-states are shaded) was found to alter critically the transport properties in this material suggesting an opportunity to improve the thermoelectric efficiency by tuning the external strain which may changing the location of the f-sates.

  • PDF