• Title/Summary/Keyword: localized reliability

Search Result 53, Processing Time 0.026 seconds

Nondestructive Evaluation of Temporarily Repaired CFRP Laminates Subjected to Delaminations due to Localized Heating and Cyclic Loading Combined

  • Han, Tae-Young;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.268-279
    • /
    • 2007
  • The reliability of cold-bonding repair technique of carbon-fiber reinforced plastics (CFRP) laminates, often used as a temporary repair for the airplane maintenance, has been evaluated during cyclic loading and localized heating by nondestructive methods. Major concern was given to the evolution of damage after repair in the form of delaminations due to localized heating and cyclic loading combined. An area of interest both on the specimen repaired by cold-bonding and the specimen without repair where delaminations were induced by localized heating and cyclic loading was monitored by acoustic emission (AE) testing and further examined by pitch-catch low-frequency bond testing, and pulse-echo high-frequency ultrasonic testing. The results showed that the reliability of cold-bonding repair would be significantly reduced by the localized heating and cyclic loading combined rather than by the cyclic loading only. AE monitoring appeared to be an effective and reliable tool to monitor the integrity of temporarily repaired CFRP laminates in terms of the structural health monitoring (SHM) philosophy.

Localized reliability analysis on a large-span rigid frame bridge based on monitored strains from the long-term SHM system

  • Liu, Zejia;Li, Yinghua;Tang, Liqun;Liu, Yiping;Jiang, Zhenyu;Fang, Daining
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.209-224
    • /
    • 2014
  • With more and more built long-term structural health monitoring (SHM) systems, it has been considered to apply monitored data to learn the reliability of bridges. In this paper, based on a long-term SHM system, especially in which the sensors were embedded from the beginning of the construction of the bridge, a method to calculate the localized reliability around an embedded sensor is recommended and implemented. In the reliability analysis, the probability distribution of loading can be the statistics of stress transferred from the monitored strain which covered the effects of both the live and dead loads directly, and it means that the mean value and deviation of loads are fully derived from the monitored data. The probability distribution of resistance may be the statistics of strength of the material of the bridge accordingly. With five years' monitored strains, the localized reliabilities around the monitoring sensors of a bridge were computed by the method. Further, the monitored stresses are classified into two time segments in one year period to count the loading probability distribution according to the local climate conditions, which helps us to learn the reliability in different time segments and their evolvement trends. The results show that reliabilities and their evolvement trends in different parts of the bridge are different though they are all reliable yet. The method recommended in this paper is feasible to learn the localized reliabilities revealed from monitored data of a long-term SHM system of bridges, which would help bridge engineers and managers to decide a bridge inspection or maintenance strategy.

Characteristics of Elastics Waves of Fiber-Reinforced Plastic with Localized Heat Damage (국부 열손상을 받은 복합재료의 탄성파특성)

  • 남기우;김영운
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.48-53
    • /
    • 2002
  • Fiber-reinforced composites are extensively used in electronic, ship and aerospace applications due to their high strength and high toughess. In these applications, they are often subjected to localized heat damage due to various sources. In order to ensure their reliability, it is important to predict their residual properties using nondestructive evaluation thchniques. Fabric fiber composite specimens were manufactured with six layers of the glass-fiber prepreg and the carbon-fiber prepreg, respectively. The specimens were subjected to a localized heat damage using a heated copper tip with a diameter of 10mm at 35$0^{\circ}C$(CFRP) and 30$0^{\circ}C$(GFRP), respectively. The specimens were then subjected to tension tests while acoustic emission (AE) activities of specimens were collected. The AE activity of all specimens showed three types of distinct frequency regions. Those are matrix cracking, failure of the fiber/matrix interface and fiber breakage.

A Conceptual Approach to Evaluating the Reliability of a Climate Change Adaptation System

  • Park, ChangKeun;Cho, Dongin
    • Asian Journal of Innovation and Policy
    • /
    • v.9 no.1
    • /
    • pp.36-55
    • /
    • 2020
  • Climate change is one of the most discussed issues in international for a today. Evaluating the effect of climate change at a regional level and setting up an appropriate policy to address the issues associated with climate change require a proper evaluation process on the climate change and adaptation projects already implemented. Although various evaluation approaches to climate change adaptation programs have been proposed, it is rare to find a proper systematic approach to evaluating the reliability of those climate change adaptation programs. In the current situation regarding the system to evaluate climate change adaptation programs, the purpose of this study is to suggest a theoretical and standardized evaluation system on the reliability of climate change adaptation schemes. The new approach suggested in this paper will be appropriate when requiring a confidence level for adaptation programs that are specially localized and categorized. Using various quantitative and qualitative evaluation methods with the inherent reality mechanism, we provide a conceptual framework to measure the reliability of climate change adaptation programs with a flexible adjustment process. With the proposed framework, it is possible to provide the level of confidence on the results collected from the evaluation systems and construct a standardized, system-wide assessment procedure toward climate change adaptation policies. By applying this approach based on scientific evidence on the reliability of climate change adaptation policies, appropriate and efficient climate change adaptation programs will be properly designed for and implemented in Korea.

Evaluation of Overtopping Risks of Levee by using Reliability Analysis (신뢰성 해석에 의한 제방의 월류 위험도 산정)

  • Lee, Cheol-Eung;Park, Dong-Heon;Shim, Jae-Wook
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.101-110
    • /
    • 2009
  • Due to frequent occurrence of a localized torrential downpour caused by global warming and change of outflow tendency caused by rapid urbanization and industrialization, risk analysis must be carried out in levee design with uncertainty. In this study, reliability analysis was introduced to quantitatively evaluate the overtopping risk of levee by the uncertainty. First of all, breaking function was established as a function of flood stage and height of levee. All variables of breaking function were considered as random variables following any distribution functions, and the risk was defined as the possibility that the flood stage is formed higher than height of levee. The risk evaluation model was developed with AFDA (Approximate Full Distribution Approach). The flood stage computed by 2-D numerical model FESWMS-2DH was used as input data for the model of levee risk evaluation. Risk for levee submergence were quantitatively presented for levee of Wol-Song-Cheon.

  • PDF

Human Iris Recognition using Wavelet Transform and Neural Network

  • Cho, Seong-Won;Kim, Jae-Min;Won, Jung-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.178-186
    • /
    • 2003
  • Recently, many researchers have been interested in biometric systems such as fingerprint, handwriting, key-stroke patterns and human iris. From the viewpoint of reliability and robustness, iris recognition is the most attractive biometric system. Moreover, the iris recognition system is a comfortable biometric system, since the video image of an eye can be taken at a distance. In this paper, we discuss human iris recognition, which is based on accurate iris localization, robust feature extraction, and Neural Network classification. The iris region is accurately localized in the eye image using a multiresolution active snake model. For the feature representation, the localized iris image is decomposed using wavelet transform based on dyadic Haar wavelet. Experimental results show the usefulness of wavelet transform in comparison to conventional Gabor transform. In addition, we present a new method for setting initial weight vectors in competitive learning. The proposed initialization method yields better accuracy than the conventional method.

Numerical simulation of the effects of localized cladding oxidation on LWR fuel rod design limits using a SLICE-DO model of the FALCON code

  • Khvostov, Grigori
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.135-147
    • /
    • 2020
  • A methodology for evaluation of mechanical and thermal effects of localized non-axisymmetric oxidation in zircaloy claddings on LWR fuel reliability is proposed. To this end, the basic capabilities of the FALCON fuel behaviour code are used. Examples of methodology application to adjustment of selected operational limits for modern BWR fuel rods, to capture effects of the excess local oxidation, are presented. Specifically, the limiting rod internal pressure for the onset of cladding lift-off is reduced, depending on initial excess oxidation spot sizes. Also, the power limits for Anticipated Operational Occurrences are adjusted, to preclude fuel melting and cladding failure due to PCMI and PCI-SCC in the affected fuel rods.

Stochastic Disaggregation and Aggregation of Localized Uncertainty in Pavement Deterioration Process (포장파손과정의 지역적 불확실성에 대한 확률적 분해와 조합)

  • Han, Daeseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1651-1664
    • /
    • 2013
  • Precise analysis on deterioration processes of road pavements is not so simple matter due to severe uncertainty originated from a lot of explanatory variables engaged in. For those reasons, most analytical models for pavement deterioration prediction have often preferred to probabilistic approaches than deterministic models. However, the general probabilistic approaches that treat overall characteristics of population or entire sample would not be suitable for providing detail or localized information on their changing process. Considering the aspects, this paper aimed to suggest a stochastic disaggregation method to analyze the localized deterioration speeds and its variances changed by time and condition states. In addition, life expectancies and their uncertainty were estimated by probabilistic algorithm using the disaggregated stochastic process. For an empirical study, pavement inspection data (crack) accumulated from 2003 to 2010 from Korean national highway network was applied. This study can contribute to securing reliability of life cycle cost analysis, which is one of the primary analyses in road asset management, with much advanced deterioration forecasting functions. In addition, it would be meaningful trials as fundamental research for preventive maintenance strategy that demands essential understanding on changing process of the deterioration speed of pavement.

The Evaluation of Non-Destructive Formulas on Compressive Strength Using the Reliability Based on Probability (확률 기반의 신뢰도를 이용한 비파괴 압축강도 추정식 평가)

  • Park, Jin-Woo;Choo, Jin-Ho;Park, Gwang-Rim;Hwang, In-Baek;Shin, Yong-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.25-34
    • /
    • 2015
  • Proposed equation is used many time in calculation of concrete compressive strength using the non-destructive testing at precision safety diagnosis. Most of proposed equation is suggested in abroad and have an error to estimate concrete compressive strength in the domestic. Therefor, proposed equation is low reliability to estimate concrete compressive and it has a significant effect in reliability of precision safety diagnosis. Nevertheless, It is possible to increase the reliability through a number of experiments from this problem that occurs in some localized part. This paper is proposed assessment formula of reliability related core compressive strength to increase the reliability. It is verified that reliability of proposed assessment formula is useful by probabilistic techniques. It is compared with each graphs of concrete compressive strength of proposed equation. It has been found that the present methods are very efficient.

A study on the fatigue and fracture characteristics of localized nuclear reactor vessel material (국산 원자로용기 재료의 피로 및 파괴특성 연구)

  • Jeong, Sun-Eok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1626-1635
    • /
    • 1997
  • It is important to ensure the reliability of the first localized reactor vessel steel. To satisfy with this purpose, a study on the impact/hardness, low cycle fatigue(LCF), crack growth rate(da/dN) and fracture toughness( ) of base material(BM) and weld metal(WM) were performed under room temperature air and corrosion conditions. A summary of the results is as folows : (1) Charpy impact absorbed energy of BM was the highest value, heat affected zoon(HAZ) and the lowest, WM. The hardness of BM was similar to HAZ. (2) Coefficients of Manson equation using the monotonic tensile test data were obtained for the present material. (3) The effects of stress ratio and ambient (120.deg. C and NaCl) condition on da/dN were investigated, da/dN with NaCl condition expressed the highest value. (4) The results of Charpy V-notch impact test had good correlation with $K_{IC}$ characteristics and the lowest curve of $K_{IC}$ for BM was derived, more researches about WM and HAZ are required hereafter.