• Title/Summary/Keyword: localization error

Search Result 504, Processing Time 0.024 seconds

Efficient Sound Source Localization System Using Angle Division (영역 분할을 이용한 효율적인 음원 위치 추정 시스템)

  • Kim, Yong-Eun;Cho, Su-Hyun;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.114-119
    • /
    • 2009
  • Sound source localization systems in service robot applications estimate the direction of a human voice. Time delay information obtained from a few separate microphones is widely used for the estimation of the sound direction. Correlation is computed in order to calculate the time delay between two signals. Inverse cosine is used when the position of the maximum correlation value is converted to an angle. Because of nonlinear characteristic of inverse cosine, the accuracy of the computed angle is varied depending on the position of the specific sound source. In this paper, we propose an efficient sound source localization system using angle division. By the proposed approach, the region from $0^{\circ}$ to $180^{\circ}$ is divided into three regions and we consider only one of the three regions. Thus considerable amount of computation time is saved. Also, the accuracy of the computed angle is improved since the selected region corresponds to the linear part of the inverse cosine function. By simulations, it is shown that the error of the proposed algorithm is only 31% of that of the conventional a roach.

Ultra-WideBand Channel Measurement with Compressive Sampling for Indoor Localization (실내 위치추정을 위한 Compressive Sampling적용 Ultra-WideBand 채널 측정기법)

  • Kim, Sujin;Myung, Jungho;Kang, Joonhyuk;Sung, Tae-Kyung;Lee, Kwang-Eog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.285-297
    • /
    • 2015
  • In this paper, Ulta-WideBand (UWB) channel measurement and modeling based on compressive sampling (CS) are proposed. The sparsity of the channel impulse response (CIR) of the UWB signal in frequency domain enables the proposed channel measurement to have a low-complexity and to provide a comparable performance compared with the existing approaches especially used for the indoor geo-localization purpose. Furthermore, to improve the performance under noisy situation, the soft thresholding method is also investigated in solving the optimization problem for signal recovery of CS. Via numerical results, the proposed channel measurement and modeling are evaluated with the real measured data in terms of location estimation error, bandwidth, and compression ratio for indoor geo-localization using UWB system.

Location-based Frequency Interference Management Scheme Using Fingerprinting Localization Algorithms (Fingerprinting 무선측위 알고리즘을 이용한 영역 기반의 주파수 간섭 관리 기법)

  • Hong, Aeran;Kim, Kwangyul;Yang, Mochan;Oh, Sunae;Jung, Hongkyu;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.10
    • /
    • pp.901-908
    • /
    • 2012
  • In an intelligent automated manufacturing environment, an administrator may use M2M (Machine-to-Machine) communication to recognize machine movement and the environment, as well as to respond to any potential dangers. However, commonly used wireless protocols for this purpose such WLAN (Wireless Local Area Network), ZigBee, and Bluetooth use the same ISM (Industrial Science Medical) band, and this may cause frequency interference among different devices. Moreover, an administrator is frequently exposed to dangerous conditions as a result of being surrounded by densely distributed moving machines. To address this issue, we propose in this paper to employ a location-based frequency interference management using fingerprinting scheme in industrial environments and its advanced localization schemes based on k-NN (Nearest Neighbor) algorithms. Simulation results indicate that the proposed schemes reduce distance error, frequency interference, and any potential danger may be responded immediately by continuous tracing of the locations.

A Study of Temporary Positioning Scheme with IoT devices for Disastrous Situations in Indoor Spaces Without Permanent Network Infrastructure (상설 네트워크 인프라가 없는 실내 공간에서 재난시 IoT 기기를 활용한 부착형 실내 위치 추적 기술 연구)

  • Lee, Jeongpyo;Yun, Younguk;Kim, Sangsoo;Kim, Youngok
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.315-324
    • /
    • 2018
  • Purpose: This paper propose a temporary indoor positioning scheme with devices of internet of things (IoT) for disastrous situations in places without the infrastructure of networks. Method: The proposed scheme is based on the weighted centroid localization scheme that can estimate the position of a target with simple computation. Results: It also is implemented with the IoT devices at the underground parking lot, where the network is not installed, of general office building. According to the experiment results, the positioning error was around 10m without a priori calibration process at $82.5m{\times}56.4m$ underground space. Conclusion: The proposed scheme can be deployed many places without the infrastructure of networks, such as parking lots, warehouses, factory, etc.

Fuzzy and Proportional Controls for Driving Control of Forklift AGV (퍼지와 비례 제어를 이용한 지게차 AGV의 주행제어)

  • Kim, Jung-Min;Park, Jung-Je;Jeon, Tae-Ryong;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.699-705
    • /
    • 2009
  • This paper is represented to research of driving control for the forklift AGV. The related works that were studied about AGV as heavy equipment used two methods which are magnet-gyro and wire guidance for localization. However, they have weaknesses that are high cost, difficult maintenance according to change of environment. In this paper, we develop localization system through sensor fusion with laser navigation system and encoder, gyro for robustness. Also we design driving controller using fuzzy and proportional control. It considers distance and angle difference between forklift AGV and pallet for engaging work. To analyze performance of the proposed control system, we experiment in same working condition over 10 times. In the results, the average error was presented with 54.16mm between simulation of control navigation and real control navigation. Consequently, experimental result shows that the performance of proposed control system is effective.

Method to Improve Localization and Mapping Accuracy on the Urban Road Using GPS, Monocular Camera and HD Map (GPS와 단안카메라, HD Map을 이용한 도심 도로상에서의 위치측정 및 맵핑 정확도 향상 방안)

  • Kim, Young-Hun;Kim, Jae-Myeong;Kim, Gi-Chang;Choi, Yun-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1095-1109
    • /
    • 2021
  • The technology used to recognize the location and surroundings of autonomous vehicles is called SLAM. SLAM standsfor Simultaneously Localization and Mapping and hasrecently been actively utilized in research on autonomous vehicles,starting with robotic research. Expensive GPS, INS, LiDAR, RADAR, and Wheel Odometry allow precise magnetic positioning and mapping in centimeters. However, if it can secure similar accuracy as using cheaper Cameras and GPS data, it will contribute to advancing the era of autonomous driving. In this paper, we present a method for converging monocular camera with RTK-enabled GPS data to perform RMSE 33.7 cm localization and mapping on the urban road.

Multi-directional DRSS Technique for Indoor Vehicle Navigation (실내 차량 내비게이션을 위한 다방향 DRSS 기술)

  • Kim, Seon;Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.936-942
    • /
    • 2022
  • While indoor vehicle navigation is an essential component in large-scale parking garages of major cities, technical limitations and challenging propagation environments considerably degrade the accuracy of existing localization techniques. This paper proposes a proximity detection scheme using low-cost beacons where a handheld mobile device within a moving vehicle autonomously detects its approximate position and moving direction by only observing Received Signal Strength (RSS) values of beacon signals. The proposed approach essentially exploits the differential RSS technique of multi-directional beams to reduce the impact of the environment, vehicle, and mobile device. A low-cost multi-directional beacon prototype is developed using Bluetooth technology. The localization performance is evaluated using 96 beacons in an underground parking garage within an area of 394.8m×304.3m. Experimental results show that the 90th percentile of the average proximity detection error is 0.8m. Furthermore, our proposed scheme provides robust proximity detection performance with various vehicles and mobile devices.

Damage localization and quantification of a truss bridge using PCA and convolutional neural network

  • Jiajia, Hao;Xinqun, Zhu;Yang, Yu;Chunwei, Zhang;Jianchun, Li
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.673-686
    • /
    • 2022
  • Deep learning algorithms for Structural Health Monitoring (SHM) have been extracting the interest of researchers and engineers. These algorithms commonly used loss functions and evaluation indices like the mean square error (MSE) which were not originally designed for SHM problems. An updated loss function which was specifically constructed for deep-learning-based structural damage detection problems has been proposed in this study. By tuning the coefficients of the loss function, the weights for damage localization and quantification can be adapted to the real situation and the deep learning network can avoid unnecessary iterations on damage localization and focus on the damage severity identification. To prove efficiency of the proposed method, structural damage detection using convolutional neural networks (CNNs) was conducted on a truss bridge model. Results showed that the validation curve with the updated loss function converged faster than the traditional MSE. Data augmentation was conducted to improve the anti-noise ability of the proposed method. For reducing the training time, the normalized modal strain energy change (NMSEC) was extracted, and the principal component analysis (PCA) was adopted for dimension reduction. The results showed that the training time was reduced by 90% and the damage identification accuracy could also have a slight increase. Furthermore, the effect of different modes and elements on the training dataset was also analyzed. The proposed method could greatly improve the performance for structural damage detection on both the training time and detection accuracy.

Calibrating Electrode Misplacement in Underwater Electric Field Sensor Arrays for the Electric Field-Based Localization of Underwater Vessels (수중 이동체의 전기장 신호 기반 위치추정을 위한 수중 전기장 배열센서의 전극 부설 위치 오차 보정 방법)

  • Kim, Jason;Lee Ingyu;Bae, Ki-Woong;Yu, Son-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.330-336
    • /
    • 2022
  • This paper proposes a method to calibrate the electrode misplacement in underwater electric field sensor arrays (EFSAs) for accurate measurements of underwater electric field signatures. The electrode misplacement of an EFSA was estimated by measuring the electric field signatures generated by a known electric source and by comparing the measurements with the theoretical calculations under similar measurement conditions. When the EFSA measured the electric field signatures induced by an unknown electric source, the electric properties of the unknown electric source were approximated by considering the optimized estimation of the electrode misplacement of the EFSA. Finally, the measured electric field signatures were calibrated by calculating the theoretical electric field signatures to be measured with an ideally installed EFSA without electrode misplacement; the approximated electric properties of the unknown electric source were also taken into account. Simulations were conducted to test the proposed calibration method. The results showed that the electrode misplacement could be estimated. Further, the electric field measurements and the electric field-based localization of underwater vessels became more accurate after the application of the proposed calibration method. The proposed method will contribute to applications such as the detection and localization of underwater electric sources, which require accurate measurements of underwater electric field signatures.

Study on 2.5D Map Building and Map Merging Method for Rescue Robot Navigation (재난 구조용 로봇의 자율주행을 위한 지도작성 및 2.5D 지도정합에 관한 연구)

  • Kim, Su Ho;Shim, Jae Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.114-130
    • /
    • 2022
  • The purpose of this study was to investigate the possibility of increasing the efficiency of disaster relief rescue operations through collaboration among multiple aerial and ground robots. The robots create 2.5D maps, which are merged into a 2.5D map. The 2.5D map can be handled by a low-specification controller of an aerial robot and is suitable for ground robot navigation. For localization of the aerial robot, a six-degree-of-freedom pose recognition method using VIO was applied. To build a 2.5D map, an image conversion technique was employed. In addition, to merge 2.5D maps, an image similarity calculation technique based on the features on a wall was used. Localization and navigation were performed using a ground robot to evaluate the reliability of the 2.5D map. As a result, it was possible to estimate the location with an average and standard error of less than 0.3 m for the place where the 2.5D map was normally built, and there were only four collisions for the obstacle with the smallest volume. Based on the 2.5D map building and map merging system for the aerial robot used in this study, it is expected that disaster response work efficiency can be improved by combining the advantages of heterogeneous robots.