• Title/Summary/Keyword: localization error

Search Result 504, Processing Time 0.032 seconds

Coordinate Estimation of Mobile Robot Using Optical Mouse Sensors (광 마우스 센서를 이용한 이동로봇 좌표추정)

  • Park, Sang-Hyung;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.716-722
    • /
    • 2016
  • Coordinate estimation is an essential function for autonomous navigation of a mobile robot. The optical mouse sensor is convenient and cost-effective for the coordinate estimation problem. It is possible to overcome the position estimation error caused by the slip and the model mismatch of robot's motion equation using the optical mouse sensor. One of the simple methods for the position estimation using the optical mouse sensor is integration of the velocity data from the sensor with time. However, the unavoidable noise in the sensor data may deteriorate the position estimation in case of the simple integration method. In general, a mobile robot has ready-to-use motion information from the encoder sensors of driving motors. By combining the velocity data from the optical mouse sensor and the motion information of a mobile robot, it is possible to improve the coordinate estimation performance. In this paper, a coordinate estimation algorithm for an autonomous mobile robot is presented based on the well-known Kalman filter that is useful to combine the different types of sensors. Computer simulation results show the performance of the proposed localization algorithm for several types of trajectories in comparison with the simple integration method.

Positional Tracking System Using Smartphone Sensor Information

  • Kim, Jung Yee
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.265-270
    • /
    • 2019
  • The technology to locate an individual has enabled various services, its utilization has increased. There were constraints such as the use of separate expensive equipment or the installation of specific devices on a facility, with most of the location technology studies focusing on the accuracy of location verification. These constraints can result in accuracy within a few tens of centimeters, but they are not technology that can be applied to a user's location in real-time in daily life. Therefore, this paper aims to track the locations of smartphones only using the basic components of smartphones. Based on smartphone sensor data, localization accuracy that can be used for verification of the users' locations is aimed at. Accelerometers, Wifi radio maps, and GPS sensor information are utilized to implement it. In forging the radio map, signal maps were built at each vertex based on the graph data structure This approach reduces traditional map-building efforts at the offline phase. Accelerometer data were made to determine the user's moving status, and the collected sensor data were fused using particle filters. Experiments have shown that the average user's location error is about 3.7 meters, which makes it reasonable for providing location-based services in everyday life.

Distance Estimation Method between Two Nodes in Wireless Sensor Networks (무선 센서 네트워크에서 두 노드간 거리 추정 기법)

  • Kwon Oh-Heum;Kim Sook-Yeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.209-216
    • /
    • 2005
  • In wireless sensor networks, an estimation method is proposed for distances between nodes within two hops. The method uses only proximity information of nodes without physiccal distance measurements. It drastically improves the performance of localization algorithms based on Proximity information. In addition, it is the first method that estimates distances between nodes exactly in two hops. The distances are estimated from the number of common neighbors under an assumption that the number of common neighbors is proportional to the intersection of two unit disks centered at the two nodes. Simulation analysis shows that the estimation error is roughly from 10 to 20 percent of real distances. Meanwhile, the number of messages required by a distributed algorithm realizing this method is only two times the number of nodes.

  • PDF

A Simulation for Robust SLAM to the Error of Heading in Towing Tank (Unscented Kalman Filter을 이용한 Simultaneous Localization and Mapping 기법 적용)

  • Hwang, A-Rom;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.339-346
    • /
    • 2006
  • Increased usage of autonomous underwater vehicle (AUV) has led to the development of alternative navigational methods that do not employ the acoustic beacons and dead reckoning sensors. This paper describes a simultaneous localization and mapping (SLAM) scheme that uses range sonars mounted on a small AUV. The SLAM is one of such alternative navigation methods for measuring the environment that the vehicle is passing through and providing relative position of AUV by processing the data from sonar measurements. A technique for SLAM algorithm which uses several ranging sonars is presented. This technique utilizes an unscented Kalman filter to estimate the locations of the AUV and objects. In order for the algorithm to work efficiently, the nearest neighbor standard filter is introduced as the algorithm of data association in the SLAM for associating the stored targets the sonar returns at each time step. The proposed SLAM algorithm is tested by simulations under various conditions. The results of the simulation show that the proposed SLAM algorithm is capable of estimating the position of the AUV and the object and demonstrates that the algorithm will perform well in various environments.

  • PDF

Distance Data Analysis of Indoor Environment for Ultrasonic Sensor Error Decrease (초음파 센서 오차 감소를 위한 실내 환경의 거리 자료 분석)

  • Lim, Byung-Hyun;Ko, Nak-Yong;Hwang, Jong-Sun;Kim, Yeong-Min;Park, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.62-65
    • /
    • 2003
  • When a mobile robot moves around autonomously without man-made corrupted bye landmarks, it is essential to recognize the placement of surrounding objects especially for self localization, obstacle avoidance, and target classification and localization. To recognize the environment we use many Kinds of sensors, such as ultrasonic sensors, laser range finder, CCD camera, and so on. Among the sensors, ultra sonic sensors(sonar)are unexpensive and easy to use. In this paper, we analyze the sonar data and propose a method to recognize features of indoor environment. It is supposed that the environments are consisted of features of planes, edges, and corners, For the analysis, sonar data of plane, edge, and corner are accumulated for several given ranges. The data are filtered to eliminate some noise using the Kalman filter algorithm. Then, the data for each feature are compared each other to extract the character is ties of each feature. We demonstrate the applicability of the proposed method using the sonar data obtained form a sonar transducer rotating and scanning the range information around a indoor environment.

  • PDF

Implementation of Path Finding Method using 3D Mapping for Autonomous Robotic (3차원 공간 맵핑을 통한 로봇의 경로 구현)

  • Son, Eun-Ho;Kim, Young-Chul;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.168-177
    • /
    • 2008
  • Path finding is a key element in the navigation of a mobile robot. To find a path, robot should know their position exactly, since the position error exposes a robot to many dangerous conditions. It could make a robot move to a wrong direction so that it may have damage by collision by the surrounding obstacles. We propose a method obtaining an accurate robot position. The localization of a mobile robot in its working environment performs by using a vision system and Virtual Reality Modeling Language(VRML). The robot identifies landmarks located in the environment. An image processing and neural network pattern matching techniques have been applied to find location of the robot. After the self-positioning procedure, the 2-D scene of the vision is overlaid onto a VRML scene. This paper describes how to realize the self-positioning, and shows the overlay between the 2-D and VRML scenes. The suggested method defines a robot's path successfully. An experiment using the suggested algorithm apply to a mobile robot has been performed and the result shows a good path tracking.

Wavelet-based Algorithm for Signal Reconstruction (신호 복원을 위한 웨이브렛기반 알고리즘)

  • Bae, Sang-Bum;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.150-156
    • /
    • 2007
  • Noise is generated by several causes, when signal is processed. Hence, it generates error in the process of data transmission and decreases recognition ratio of image and speech data. Therefore, after eliminating those noises, a variety of methods for reconstructing the signal have been researched. Recently, wavelet transform which has time-frequency localization and is possible for multiresolution analysis is applied to many fields of technology. Then threshold-and correlation-based methods are proposed for removing noise. But, conventional methods accept a lot of noise as an edge and are impossible to remove the additive white Gaussian noise (AWGN) and the impulse noise at the same time. Therefore, in this paper we proposed new wavelet-based algorithm for reconstructing degraded signal by noise and compared it with conventional methods.

The Security DV-Hop Algorithm against Multiple-Wormhole-Node-Link in WSN

  • Li, Jianpo;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2223-2242
    • /
    • 2019
  • Distance Vector-Hop (DV-Hop) algorithm is widely used in node localization. It often suffers the wormhole attack. The current researches focus on Double-Wormhole-Node-Link (DWNL) and have limited attention to Multi-Wormhole-Node-Link (MWNL). In this paper, we propose a security DV-Hop algorithm (AMLDV-Hop) to resist MWNL. Firstly, the algorithm establishes the Neighbor List (NL) in initialization phase. It uses the NL to find the suspect beacon nodes and then find the actually attacked beacon nodes by calculating the distances to other beacon nodes. The attacked beacon nodes generate and broadcast the conflict sets to distinguish the different wormhole areas. The unknown nodes take the marked beacon nodes as references and mark themselves with different numbers in the first-round marking. If the unknown nodes fail to mark themselves, they will take the marked unknown nodes as references to mark themselves in the second-round marking. The unknown nodes that still fail to be marked are semi-isolated. The results indicate that the localization error of proposed AMLDV-Hop algorithm has 112.3%, 10.2%, 41.7%, 6.9% reduction compared to the attacked DV-Hop algorithm, the Label-based DV-Hop (LBDV-Hop), the Secure Neighbor Discovery Based DV-Hop (NDDV-Hop), and the Against Wormhole DV-Hop (AWDV-Hop) algorithm.

Surface Centroid TOA Location Algorithm for VLC System

  • Zhang, Yuexia;Chen, Hang;Chen, Shuang;Jin, Jiacheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.277-290
    • /
    • 2019
  • The demand for indoor positioning is increasing day by day. However, the widely used positioning methods today cannot satisfy the requirements of the indoor environment in terms of the positioning accuracy and deployment cost. In the existing research domain, the localization algorithm based on three-dimensional space is less accurate, and its robustness is not high. Visible light communication technology (VLC) combines lighting and positioning to reduce the cost of equipment deployment and improve the positioning accuracy. Further, it has become a popular research topic for telecommunication and positioning in the indoor environment. This paper proposes a surface centroid TOA localization algorithm based on the VLC system. The algorithm uses the multiple solutions estimated by the trilateration method to form the intersecting planes of the spheres. Then, it centers the centroid of the surface area as the position of the unknown node. Simulation results show that compared with the traditional TOA positioning algorithm, the average positioning error of the surface centroid TOA algorithm is reduced by 0.3243 cm and the positioning accuracy is improved by 45%. Therefore, the proposed algorithm has better positioning accuracy than the traditional TOA positioning algorithm, and has certain application value.

BIM model-based structural damage localization using visual-inertial odometry

  • Junyeon Chung;Kiyoung Kim;Hoon Sohn
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.561-571
    • /
    • 2023
  • Ensuring the safety of a structure necessitates that repairs are carried out based on accurate inspections and records of damage information. Traditional methods of recording damage rely on individual paper-based documents, making it challenging for inspectors to accurately record damage locations and track chronological changes. Recent research has suggested the adoption of building information modeling (BIM) to record detailed damage information; however, localizing damages on a BIM model can be time-consuming. To overcome this limitation, this study proposes a method to automatically localize damages on a BIM model in real-time, utilizing consecutive images and measurements from an inertial measurement unit in close proximity to damages. The proposed method employs a visual-inertial odometry algorithm to estimate the camera pose, detect damages, and compute the damage location in the coordinate of a prebuilt BIM model. The feasibility and effectiveness of the proposed method were validated through an experiment conducted on a campus building. Results revealed that the proposed method successfully localized damages on the BIM model in real-time, with a root mean square error of 6.6 cm.