• Title/Summary/Keyword: localization error

Search Result 504, Processing Time 0.041 seconds

Efficient Implementation of GMDA-based DOA Technique Using Pre-training Phase Unwrapping for Source Localization

  • Sang-Ick Kang;Seongbin Kim;Sangmin Lee
    • Journal of Internet Technology
    • /
    • v.21 no.3
    • /
    • pp.841-847
    • /
    • 2020
  • In this paper, a novel technique that improves the performance of generalized mixture decomposition algorithm (GMDA) based on pre-training phase unwrapping. From the investigation of the GMDA scheme, it was discovered that the conventional GMDA technique cannot fully consider phase unwrapping, because the estimated inter-channel phase difference (IPD) slope is initialized randomly. To avoid this phenomenon, the proposed GMDA approach initialized the IPD slope from the data of low-frequency bins. Experimental results show that comparing to the conventional GMDA technique, the proposed GMDA technique based on pre-training phase unwrapping obtains a lower estimation error. When integrated into a source localization system, the result of source localization is improved.

Absolute Positioning System for Mobile Robot Navigation in an Indoor Environment (ICCAS 2004)

  • Yun, Jae-Mu;Park, Jin-Woo;Choi, Ho-Seek;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1448-1451
    • /
    • 2004
  • Position estimation is one of the most important functions for the mobile robot navigating in the unstructured environment. Most of previous localization schemes estimate current position and pose of mobile robot by applying various localization algorithms with the information obtained from sensors which are set on the mobile robot, or by recognizing an artificial landmark attached on the wall, or objects of the environment as natural landmark in the indoor environment. Several drawbacks about them have been brought up. To compensate the drawbacks, a new localization method that estimates the absolute position of the mobile robot by using a fixed camera on the ceiling in the corridor is proposed. And also, it can improve the success rate for position estimation using the proposed method, which calculates the real size of an object. This scheme is not a relative localization, which decreases the position error through algorithms with noisy sensor data, but a kind of absolute localization. The effectiveness of the proposed localization scheme is demonstrated through the experiments.

  • PDF

Hybrid Closed-Form Solution for Wireless Localization with Range Measurements (거리정보 기반 무선위치추정을 위한 혼합 폐쇄형 해)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.633-639
    • /
    • 2013
  • Several estimation methods used in the range measurement based wireless localization area have individual problems. These problems may not occur according to certain application areas. However, these problems may give rise to serious problems in particular applications. In this paper, three methods, ILS (Iterative Least Squares), DS (Direct Solution), and DSRM (Difference of Squared Range Measurements) methods are considered. Problems that can occur in these methods are defined and a simple hybrid solution is presented to solve them. The ILS method is the most frequently used method in wireless localization and has local minimum problems and a large computational burden compared with closed-form solutions. The DS method requires less processing time than the ILS method. However, a solution for this method may include a complex number caused by the relations between the location of reference nodes and range measurement errors. In the near-field region of the complex solution, large estimation errors occur. In the DSRM method, large measurement errors occur when the mobile node is far from the reference nodes due to the combination of range measurement error and range data. This creates the problem of large localization errors. In this paper, these problems are defined and a hybrid localization method is presented to avoid them by integrating the DS and DSRM methods. The defined problems are confirmed and the performance of the presented method is verified by a Monte-Carlo simulation.

Precise Vehicle Localization Using 3D LIDAR and GPS/DR in Urban Environment

  • Im, Jun-Hyuck;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2017
  • GPS provides the positioning solution in most areas of the world. However, the position error largely occurs in the urban area due to signal attenuation, signal blockage, and multipath. Although many studies have been carried out to solve this problem, a definite solution has not yet been proposed. Therefore, research is being conducted to solve the vehicle localization problem in the urban environment by converging sensors such as cameras and Light Detection and Ranging (LIDAR). In this paper, the precise vehicle localization using 3D LIDAR (Velodyne HDL-32E) is performed in the urban area. As there are many tall buildings in the urban area and the outer walls of urban buildings consist of planes generally perpendicular to the earth's surface, the outer wall of the building meets at a vertical corner and this vertical corner can be accurately extracted using 3D LIDAR. In this paper, we describe the vertical corner extraction method using 3D LIDAR and perform the precise localization by combining the extracted corner position and GPS/DR information. The driving test was carried out in an about 4.5 km-long section near Teheran-ro, Gangnam. The lateral and longitudinal RMS position errors were 0.146 m and 0.286 m, respectively and showed very accurate localization performance.

Range-Free Localization Method based on extended-APIT Test (확장된-APIT 테스트 기반의 거리 비종속 위치추정 기법)

  • Choi, Jung-Wook;Oh, Dong-Ik
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.6
    • /
    • pp.431-443
    • /
    • 2010
  • In this paper, we propose a range-free localization method that can improve the estimation accuracy of Approximate Point in Triangle(APIT), which is the representative localization method for low cost wireless sensor networks. Specifically, we propose extended-APIT(e-APIT) method, which minimizes the error in deciding whether an object is in an area formed by three beacons. We also propose a way to improve the localization by narrowing down the potential localization area using the signals from neighboring beacons. According to the simulation performed, the proposed e-APIT method demonstrated noticeable accuracy improvement over the conventional APIT method.

Updating Smartphone's Exterior Orientation Parameters by Image-based Localization Method Using Geo-tagged Image Datasets and 3D Point Cloud as References

  • Wang, Ying Hsuan;Hong, Seunghwan;Bae, Junsu;Choi, Yoonjo;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.331-341
    • /
    • 2019
  • With the popularity of sensor-rich environments, smartphones have become one of the major platforms for obtaining and sharing information. Since it is difficult to utilize GNSS (Global Navigation Satellite System) inside the area with many buildings, the localization of smartphone in this case is considered as a challenging task. To resolve problem of localization using smartphone a four step image-based localization method and procedure is proposed. To improve the localization accuracy of smartphone datasets, MMS (Mobile Mapping System) and Google Street View were utilized. In our approach first, the searching for candidate matching image is performed by the query image of smartphone's using GNSS observation. Second, the SURF (Speed-Up Robust Features) image matching between the smartphone image and reference dataset is done and the wrong matching points are eliminated. Third, the geometric transformation is performed using the matching points with 2D affine transformation. Finally, the smartphone location and attitude estimation are done by PnP (Perspective-n-Point) algorithm. The location of smartphone GNSS observation is improved from the original 10.204m to a mean error of 3.575m. The attitude estimation is lower than 25 degrees from the 92.4% of the adjsuted images with an average of 5.1973 degrees.

Deep Learning-Based Sound Localization Using Stereo Signals Based on Synchronized ILD

  • Hwang, Hyeon Tae;Yun, Deokgyu;Choi, Seung Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.106-110
    • /
    • 2019
  • The interaural level difference (ILD) used for the sound localization using stereo signals is to find the difference in energy that the sound source reaches both ears. The conventional ILD does not consider the time difference of the stereo signals, which is a factor of lowering the accuracy. In this paper, we propose a synchronized ILD that obtains the ILD after synchronizing these time differences. This method uses the cross-correlation function (CCF) to calculate the time difference to reach both ears and use it to obtain synchronized ILD. In order to prove the performance of the proposed method, we conducted two sound localization experiments. In each experiment, the synchronized ILD and CCF or only the synchronized ILD were given as inputs of the deep neural networks (DNN), respectively. In this paper, we evaluate the performance of sound localization with mean error and accuracy of sound localization. Experimental results show that the proposed method has better performance than the conventional methods.

Study on Modeling and Simulation for Fire Localization Using Bayesian Estimation (화원 위치 추정을 위한 베이시안 추정 기반의 모델링 및 시뮬레이션 연구)

  • Kim, Taewan;Kim, Soo Chan;Kim, Jong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.424-430
    • /
    • 2021
  • Fire localization is a key mission that must be preceded for an autonomous fire suppression system. Although studies using a variety of sensors for the localization are actively being conducted, the fire localization is still unfinished due to the high cost and low performance. This paper presents the modeling and simulation of the fire localization estimation using Bayesian estimation to determine the probabilistic location of the fire. To minimize the risk of fire accidents as well as the time and cost of preparing and executing live fire tests, a 40m × 40m-virtual space is created, where two ultraviolet sensors are simulated to rotate horizontally to collect ultraviolet signals. In addition, Bayesian estimation is executed to compute the probability of the fire location by considering both sensor errors and uncertainty under fire environments. For the validation of the proposed method, sixteen fires were simulated in different locations and evaluated by calculating the difference in distance between simulated and estimated fire locations. As a result, the proposed method demonstrates reliable outputs, showing that the error distribution tendency widens as the radial distance between the sensor and the fire increases.

Effects of Gradient Switching Noise on ECD Source Localization with the EEG Data Simultaneously Recorded with MRI (MRI와 동시에 측정한 뇌전도 신호로 전류원 국지화를 할 때 경사자계 유발 잡음의 영향 분석)

  • Lee H. R.;Han J. Y.;Cho M. H.;Im C. H.;Jung H. K.;Lee S. Y.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.2
    • /
    • pp.108-115
    • /
    • 2003
  • Purpose : To evaluate the effect of the gradient switching noise on the ECD source localization with the EEG data recorded during the MRI scan. Materials and Methods : We have fabricated a spherical EEG phantom that emulates a human head on which multiple electrodes are attached. Inside the phantom, electric current dipole(ECD) sources are located to evaluate the source localization error. The EEG phantom was placed in the center of the whole-body 3.0 Tesla MRI magnet, and a sinusoidal current was fed to the ECD sources. With an MRI-compatible EEG measurement system, we recorded the multi channel electric potential signals during gradient echo single-shot EPI scans. To evaluate the effect of the gradient switching noise on the ECD source localization, we controlled the gradient noise level by changing the FOV of the EPI scan. With the measured potential signals, we have performed the ECD source localization. Results : The source localization error depends on the gradient switching noise level and the ECD source position. The gradient switching noise has much bigger negative effects on the source localization than the Gaussian noise. We have found that the ECD source localization works reasonably when the gradient switching noise power is smaller than $10\%$ of the EEG signal power. Conclusion : We think that the results of the present study can be used as a guideline to determine the degree of gradient switching noise suppression in EEG when the EEG data are to be used to enhance the performance of fMRI.

  • PDF

A Study of Compensation Algorithm for Localization based on Equivalent Distance Rate using Estimated Location Coordinator Searching Scheme (예상 위치좌표 탐색기법을 적용한 균등거리비율 기반 위치인식 보정 알고리즘 연구)

  • Kwon, Seong-Ki;Lee, Dong-Myung;Lee, Chang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3571-3577
    • /
    • 2010
  • The estimated location coordinator exploration scheme and the E&E(Equivalent distance rate & Estimated location coordinator exploration) compensation algorithm for localization is proposed, and the performance of the E&E is analyzed in this paper. The proposed scheme is adapted to the AEDR(Algorithm for localization using the concept of Equivalent Distance Rate). From several experiments, it is confirmed that the performance of the localization compensation in SDS-TWR is improved from 0.60m to 0.34m in four experimental scenarios, and the performance of the localization compensation ratio of the E&E is also better than that of the AEDR as a level of maximum 15%. It can be thought that the proposed localization compensation algorithm E&E can be sufficiently applicable to various localization applications because the performance of the localization error rate of the E&E is measured as less than 1m in 99% of the total performance experiments.