• 제목/요약/키워드: local-global approximation

검색결과 43건 처리시간 0.018초

Harmony Search 알고리즘의 수렴성 개선에 관한 연구 (Study on Improvement of Convergence in Harmony Search Algorithms)

  • 이상경;고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.401-406
    • /
    • 2011
  • 복잡해진 최적화문제를 전통적인 방법보다 효율적으로 해결하기위해 유전알고리즘이나 개미군집화, 하모니서치알고리즘과 같은 다양한 메타휴리스틱이 개발되었다. 그 중에서 하모니 서치알고리즘이 다른 메타휴리스틱알고리즘보다 좋은 결과를 보이고 있다. 하모니 서치 알고리즘은 음악을 작곡할 때 아름다운 소리를 내는 하모니를 찾는 과정을 모방했다. 성능은 하모니 메모리에서 선택하는 비율인 HMCR값과 하모니 메모리에서 선택된 값의 조정 비율을 결정하는 PAR값에 따라 달라지는 것으로 알려져 있다. 다르게 말하면 두 변수의 기반이 되는 하모니 메모리의 사용방법의 문제로 볼 수 있다. 본 논문은 설정한 기간 동안 더 좋은 최적해를 찾지 못할 경우 하모니 메모리의 일부를 좋은 하모니로 구성되게 수정하는 방법을 제안했다. 테스트 함수를 이용한 검증 실험결과에서 하모니 메모리를 수정할 경우 정확도 변화가 적어 신뢰성 있는 정확도를 보였으며, Iteration이 짧더라도 최적값에 근접한 값을 찾았다.

정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적 (Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization)

  • 장세인;박충식
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.53-65
    • /
    • 2019
  • 영상 기반의 보안 시스템의 증가함에 따라 각 용도마다 다른 다양한 객체들에 대한 처리들이 중요해지고 있다. 객체 추적은 객체 인식, 검출과 같은 작업들과 함께 필수적인 작업으로 다뤄진다. 이 객체 추적을 달성하기 위해서 다양한 머신러닝이 적용될 수 있다. 성공적인 분류기로써 전체 에러율 최소화(total-error-rate minimization) 기반의 방법론이 사용될 수 있다. 이 전체 에러율 최소화 기반의 방법론은 오프라인 학습을 기반으로 하고 있다. 객체 추적은 실시간으로 처리하며 갱신해야하는 것이 필수적이므로 온라인 학습(online learning)을 기반으로 하는 것이 적합하다. 온라인 전체 에러율 최소화 방법론이 개발되었지만 점근적으로 재가중되는(approximately reweighted) 작업이 포함되어 에러를 누적시킬 수 있다는 단점이 있다. 본 논문에서는 정확하게 재가중되는(exactly reweighted) 방법론을 제안하면서 온라인 전체 에러율 최소화가 달성되었다. 이 제안된 온라인 학습 방법론을 객체 추적에 적용하여 총 8개의 데이터베이스에서 다른 추적 방법론들 보다 좋은 성능이 달성되었다.

Control of pH Neutralization Process using Simulation Based Dynamic Programming in Simulation and Experiment (ICCAS 2004)

  • Kim, Dong-Kyu;Lee, Kwang-Soon;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.620-626
    • /
    • 2004
  • For general nonlinear processes, it is difficult to control with a linear model-based control method and nonlinear controls are considered. Among the numerous approaches suggested, the most rigorous approach is to use dynamic optimization. Many general engineering problems like control, scheduling, planning etc. are expressed by functional optimization problem and most of them can be changed into dynamic programming (DP) problems. However the DP problems are used in just few cases because as the size of the problem grows, the dynamic programming approach is suffered from the burden of calculation which is called as 'curse of dimensionality'. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach is proposed by Bertsekas and Tsitsiklis (1996). To get the solution of seriously nonlinear process control, the interest in NDP approach is enlarged and NDP algorithm is applied to diverse areas such as retailing, finance, inventory management, communication networks, etc. and it has been extended to chemical engineering parts. In the NDP approach, we select the optimal control input policy to minimize the value of cost which is calculated by the sum of current stage cost and future stages cost starting from the next state. The cost value is related with a weight square sum of error and input movement. During the calculation of optimal input policy, if the approximate cost function by using simulation data is utilized with Bellman iteration, the burden of calculation can be relieved and the curse of dimensionality problem of DP can be overcome. It is very important issue how to construct the cost-to-go function which has a good approximate performance. The neural network is one of the eager learning methods and it works as a global approximator to cost-to-go function. In this algorithm, the training of neural network is important and difficult part, and it gives significant effect on the performance of control. To avoid the difficulty in neural network training, the lazy learning method like k-nearest neighbor method can be exploited. The training is unnecessary for this method but requires more computation time and greater data storage. The pH neutralization process has long been taken as a representative benchmark problem of nonlin ar chemical process control due to its nonlinearity and time-varying nature. In this study, the NDP algorithm was applied to pH neutralization process. At first, the pH neutralization process control to use NDP algorithm was performed through simulations with various approximators. The global and local approximators are used for NDP calculation. After that, the verification of NDP in real system was made by pH neutralization experiment. The control results by NDP algorithm was compared with those by the PI controller which is traditionally used, in both simulations and experiments. From the comparison of results, the control by NDP algorithm showed faster and better control performance than PI controller. In addition to that, the control by NDP algorithm showed the good results when it applied to the cases with disturbances and multiple set point changes.

  • PDF