• Title/Summary/Keyword: local vibration

Search Result 507, Processing Time 0.026 seconds

Hybrid Damage Monitoring Technique for Bridge Connection Via Pattern-Recognition of Acceleration and Impedance Signals (가속도 및 임피던스 신호의 특징분류를 통한 교량 연결부의 하이브리드 손상 모니터링 기법)

  • Kim, Jeong-Tae;Na, Won-Bae;Hong, Dong-Soo;Lee, Byung-Jun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.57-65
    • /
    • 2006
  • This paper presents hybrid structural damage monitoring system which performs both global damage assessment of structure and damage detection of local structural joints. Hybrid damage monitoring system is composed of vibration-based technique and electro/mechanic impedance technique. Vibration-based technique detects global characteristic change ot structure using modal characteristic change of structure, and electro/mechanical impedance technique detects damage existence of local structural joints using impedance change of PZT sensor. For the verification of the proposed hybrid monitoring system, a series of damage scenarios are designed to loosened bolts situations of the structural joints, and acceleration response and impedance response signatures are measured. The proposed hybrid monitoring system is implemented to monitor global damage-state and local damages in structural joints.

Comparative evaluation of efficacy of external vibrating device and counterstimulation on child's dental anxiety and pain perception during local anesthetic administration: a clinical trial

  • Sahithi, Varada;Saikiran, Kanamarlapudi Venkata;Nunna, Mahesh;Elicherla, Sainath Reddy;Challa, Ramasubba Reddy;Nuvvula, Sivakumar
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.21 no.4
    • /
    • pp.345-355
    • /
    • 2021
  • Background: This study aimed to evaluate the efficacy of external vibrating devices and counterstimulation on a child's dental anxiety, apprehension, and pain perception during local anesthetic administration. Methods: This was a prospective, randomized, parallel-arm, single-blinded interventional, clinical trial. One hundred children aged 4-11 years, requiring pulp therapy or extraction under local anesthesia (LA), were recruited and allocated equally into two groups (1:1) based on the interventions used: Group BD (n = 50) received vibration using a Buzzy® device {MMJ Labs, Atlanta, GE, USA} as a behavior guidance technique; Group CS (n = 50) received counterstimulation for the same technique. Anxiety levels [Venham's Clinical Anxiety Rating Scale (VCARS), Venham Picture Test (VPT), Pulse oximeter {Gibson, Fingertip Pulse Oximeter}, Beijing, China)] were assessed before, during, and after LA administration, while pain perception [Wong-Baker Faces Pain Rating Scale (WBFPS), Visual Analogue Scale (VAS)] was evaluated immediately after injection. Statistical analysis was performed using the Student's t-test to assess the mean difference between the two groups and the repeated measures ANOVA for testing the mean difference in the pulse rates. Statistical significance was set at P < 0.05. Results: Significant differences in mean pulse rate values were observed in both groups. In contrast, the children in the BD group had higher diminution (P < 0.05), whereas the mean VCARS and VPT scores were conspicuous (P < 0.05). Based on the mean WBFPS and VAS scores, delayed pain perception after LA injection was more prominent in the BD group than in the CS group. Conclusion: External vibration using a Buzzy® device is comparatively better than counterstimulation in alleviating needle-associated anxiety in children requiring extraction and pulpectomy.

Eletromagnetic Field Analysis of SRM Due to Air Gap Eccentricity (Air Gap 편심에 따른 Switched Reluctance Motor의 전자기 가진력 해석)

  • 신현정;이동일;한승도
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.380.2-380
    • /
    • 2002
  • SRM(Switched Reluctance Motor) 내부의 Radial Force는 소음ㆍ진동의 주원인이 되는 가진력으로 작용하는 것으로 알려져 있다. 따라서 본 논문에서는 Radial Force의 주 요인인 Motor 내부의 Air Gap 편심에 따른 반경방향의 전자기 가진력을 전자장 수치해석을 통하여 해석하고 소음ㆍ진동에 미치는 영향을 분석하였다. Air Gap 편심량을 변화시켜 가면서 Stator, Rotor의 Local Force와 Gloval Force인 Torque Fluctuation을 해석하고 이를 실험 결과와 비교함으로서 해석결과의 타당성을 입증하였다.

  • PDF

A Study on Data Analysis of Ground Vibration.Noise Dust Dispersion Measurement for Enhancing Safety at the Construction Sites - Focussed on Blasting and Piling in Sedimentary and Igneous Rocks in the Youngnam Area - (건설 현장에서 안전성 향상을 위한 지반진동.소음.비산먼지 측정자료의 분석에 관한 연구 -영남지역의 퇴적암.화성암층에서의 발파 및 항타작업을 중심으로-)

  • 안명석;류창하;박종남
    • Explosives and Blasting
    • /
    • v.19 no.3
    • /
    • pp.91-104
    • /
    • 2001
  • As in Korean environments with mountainous and hilly areas, the rock generally has to be removed in construction or civil engineering work in tunnelling or excavation for development in urban area. Explosives should be used for blasting, which may cause serious problems on local people for their claim for compensation due to ground vibration, noise. For safe and economic blasting, geology and engineering characteristics of rocks such as discontinuities of rock or weathering are very important factors, together with site characteristics for prediction of ground vibration. In this study, conducted were the detailed study for major rocks most widely distributed in the South-east area, in-situ geological survey, geological and geochemical analysis, and further laboratory uniaxial rock stress, seismic velocity of core samples together with in-situ seismic velocity measurements. Regulations on ground vibration and noise were reviewed for assessing their adaptabilities, and a total of 4,856 measured blasting vibration data were examined for enhancing the confidence level in estimating the predictive formulation using scaled distance statistically.

  • PDF

Flow-Induced Vibration Analysis for Cascades with Stator-Rotor Interaction and Viscosity Effect (스테이터-로터 상호간섭 및 점성효과를 고려한 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Kim, Dong-Hyun;Kim, Yu-Sung;Park, Oung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.848-854
    • /
    • 2006
  • In this study, a computational analysis system has been developed in order to investigate flow-induced vibration(FIV) phenomenon for general stator-rotor cascade configurations. Relative movement of the rotor with respect to stator is reflected by modeling independent two computational domains. Fluid domains are modeled using the unstructured grid system with dynamic moving and local deforming methods. Unsteady, Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation SST $k-\omega$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used flow computing the coupled governing equations of the fluid-structure interaction problem. Detailed FIV responses for different flow conditions are presented with respect to time and vibration characteristics are also physically investigated in the time domain.

  • PDF

A study on the calculation of forced axial vibration with damping for the marine diesel engine shafting by the mechanical impedance method (기계적 임피던스법에 의한 박용디젤기관 추진축계의 강제감쇠종진동 계산에 관한 연구)

  • 박현호;김의간;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 1987
  • Recently, the problem of the axial vibration for the marine diesel engine shafting has become important due to the increased exciting forces resulting from high supercharging and large output, and the reduced natural frequencies resulting from long stroke and show speed. The effects of the axial vibration on the propulsion shafting induce cracks of the connecting point of crankpin and crankarm, the severe wear of thrust bearing, the fatigue failure of each fixing bolt and jointed parts, the hull and local hull vibrations, and also the wear and the noise due to intense hammering phenomena of thrust collar. Therefore, each classification society requires the calculation of natural frequencies and their amplitudes and also measurements of the forced damped axial vibration. At present, the technical and theoretical level is at the stage of estimating the resonant points and their maximum displacements, but the estimated displacements of the resonant points are not so reliable as the torsional one. In this study, induced stresses and amplitudes of the forced damped axial vibration are calculated. For this purpose, the equation of forced axial vibration with damping for the propulsion shafting is derived and its steady-state response is calculated by the mechanical impedance method. A computer program for above calculations is developed. The measured values are analyzed and the calculated results are compared with the measured ones. They show fairly good agreements and the reliability of developed program is confirmed.

  • PDF

Study on Vortex-Induced Vibration Predictions for Ship Rudders

  • Jang, Won-Seok;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Choi, Woen-Sug
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.325-333
    • /
    • 2020
  • As regulations concerning ship vibration and noise are becoming stricter, considerable attention is being drawn to prediction technologies for ship vibration and noise. In particular, the resonance and lock-in phenomena caused by vortex-induced vibration (VIV) have become considerably important with increases in the speed and the size of ships and ocean structures, which are known to cause structural problems. This study extends the fluid-structure interaction (FSI) analysis method to predict resonances and lock-in phenomena of high modes and VIV of ship rudders. Numerical stability is secured in underwater conditions by implementing added mass, added damping, and added stiffness by applying the potential theory to structural analysis. An expanded governing equation is developed by implementing displacements and twist angles of high modes. The lock-in velocity range and resonant frequencies of ship rudders obtained using the developed FSI method agree well with the experimental results and the analytic solution. A comparison with local vibration guidelines published by Lloyd's Register shows that predictions of resonances and lock-in phenomena of high modes are necessary in the shipbuilding industry due to the possible risks like fatigue failure.

Dynamic Characteristics of Buried Pipeline under Vibration Velocity of Vehicle Loads (도로 하부 통과 배관의 주행 하중 속도에 따른 진동 특성)

  • Won, Jong-Hwa;Sun, Jin-Sun;Yoo, Han-Kyu;Kim, Moon-Kyum
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Vibration velocity induced by earthquakes or external vibration sources is one of the integrity assessment indexes, and is also a representative value used to describe the amount of vibration because it is based on a proportional relationship with the damage scale. In this study, the vibration velocity criterion for structures is first examined. Then, based on the velocity criterion, an integrity assessment is performed. Burial condition is set up based on the "Highway and Local Road Design Criteria" with API 5L Gr. X65 pipeline(D=762 mm). The FE model considers DB-24 vehicle load as a time function with a varying velocity in the range of $20{\sim}160\;km/h$. Maximum vibration velocity occurs at v=80 km/h and decreases after v=80 km/h. The maximum vibration velocity of buried pipeline by DB-24 loads is about 0.034 cm/s. The velocity that occurs is in the range of allowable values for each vibration velocity criterion. The wave propagation velocity was identified based on attenuation law and the minimum value appears at vehicle velocity 80 km/h that has maximum vibration velocity.

  • PDF

Study of Acoustic Streaming at Resonance by Longitudinal Ultrasonic Vibration Using Particle Imaging Velocimetry (입자 영상 유속계를 이용한 초음파 수직진동에 의해 유도된 공진상태에서의 음향유동에 관한 연구)

  • 노병국;이동렬
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.340-352
    • /
    • 2004
  • Acoustic streaming induced by the microscopic longitudinal ultrasonic vibration at 28.5 ㎑ is visualized between the quiescent glass plate and ultrasonic vibrator by particle imaging velocimetry(PIV) using laser. To investigate the augmentation of air flow velocity of acoustic streaming. the velocity variations of air streaming between the stationary plate and ultrasonic vibrator are measured in real-time. It is experimentally investigated that the magnitude of the acoustic streaming dependent upon the gap between the ultrasonic vibrator and stationary p1ate results in the variations of the average velocity fields as a outcome of the bulk air flow caused by the ultrasonic vibration. In addition. maximum acoustic streaming velocity exists at resonant gap. 18mm that is one of the resonant gaps (H=18, 24, 30, 36㎜) at which resonance occurs. The variation of the local maximum turbulent intensity with axial direction appear to reveal the value of 8%∼70% dependent upon the gap between the quiescent glass plate and ultrasonic vibrator. Shearstress is also maximized at the center region of the vibrator and the vorticity is also maximum and minimum in the neighborhood of the center of the vibrator at which the local maximum turbulent intensity and shear stress exist.

Adaptive-length pendulum smart tuned mass damper using shape-memory-alloy wire for tuning period in real time

  • Pasala, Dharma Theja Reddy;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.203-217
    • /
    • 2014
  • Due to the shift in paradigm from passive control to adaptive control, smart tuned mass dampers (STMDs) have received considerable attention for vibration control in tall buildings and bridges. STMDs are superior to tuned mass dampers (TMDs) in reducing the response of the primary structure. Unlike TMDs, STMDs are capable of accommodating the changes in primary structure properties, due to damage or deterioration, by tuning in real time based on a local feedback. In this paper, a novel adaptive-length pendulum (ALP) damper is developed and experimentally verified. Length of the pendulum is adjusted in real time using a shape memory alloy (SMA) wire actuator. This can be achieved in two ways i) by changing the amount of current in the SMA wire actuator or ii) by changing the effective length of current carrying SMA wire. Using an instantaneous frequency tracking algorithm, the dominant frequency of the structure can be tracked from a local feedback signal, then the length of pendulum is adjusted to match the dominant frequency. Effectiveness of the proposed ALP-STMD mechanism, combined with the STFT frequency tracking control algorithm, is verified experimentally on a prototype two-storey shear frame. It has been observed through experimental studies that the ALP-STMD absorbs most of the input energy associated in the vicinity of tuned frequency of the pendulum damper. The reduction of storey displacements up to 80 % when subjected to forced excitation (harmonic and chirp-signal) and a faster decay rate during free vibration is observed in the experiments.