• Title/Summary/Keyword: local topography

Search Result 216, Processing Time 0.027 seconds

Investigation of Intertidal Zone using TerraSAR-X (TerraSAR-X를 이용한 조간대 관측)

  • Park, Jeong-Won;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2009
  • The main objective of the research is a feasibility study on the intertidal zone using a X-band radar satellite, TerraSAR-X. The TerraSAR-X data have been acquired in the west coast of Korea where large tidal flats, Ganghwa and Yeongjong tidal flats, are developed. Investigations include: 1) waterline and backscattering characteristics of the high resolution X-band images in tidal flats; 2) polarimetric signature of halophytes (or salt marsh plants), specifically Suaeda japonica; and 3) phase and coherence of interferometric pairs. Waterlines from TerraSAR-X data satisfy the requirement of horizontal accuracy of 60 m that corresponds to 20 cm in average height difference while current other spaceborne SAR systems could not meet the requirement. HH-polarization was the best for extraction of waterline, and its geometric position is reliable due to the short wavelength and accurate orbit control of the TerraSAR-X. A halophyte or salt marsh plant, Suaeda japonica, is an indicator of local sea level change. From X-band ground radar measurements, a dual polarization of VV/VH-pol. is anticipated to be the best for detection of the plant with about 9 dB difference at 35 degree incidence angle. However, TerraSAR-X HH/TV dual polarization was turned to be more effective for salt marsh monitoring. The HH-HV value was the maximum of about 7.9 dB at 31.6 degree incidence angle, which is fairly consistent with the results of X-band ground radar measurement. The boundary of salt marsh is effectively traceable specifically by TerraSAR-X cross-polarization data. While interferometric phase is not coherent within normal tidal flat, areas of salt marsh where the landization is preceded show coherent interferometric phases regardless of seasons or tide conditions. Although TerraSAR-X interferometry may not be effective to directly measure height or changes in tidal flat surface, TanDEM-X or other future X-band SAR tandem missions within one-day interval would be useful for mapping tidal flat topography.

Interpretation Method of Eco-Cultural Resources from the Perspective of Landscape Ecology in Jeju Olle Trail (제주 올레길 생태문화자원 경관생태학적 해석기법 연구)

  • Hur, Myung-Jin;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.128-140
    • /
    • 2021
  • This study applied the theory of Landscape Ecology to representative resources of Jeju Olle-gil, which is a representative subject of walking tourism, to identify ecological characteristics and to establish a technique for landscape ecological analysis of Olle-gil resources. Jeju Olle Trail type based on the biotope type, major land use, vegetation status around Olle Trail and roads were divided into 12 types. Based on the type of ecological tourism resource classification, the Jeju Olle-gil walking tourism resource classification was divided into seven types of natural resources and seven types of humanities resources, and each resource was characterized by Geotope, Biotope, and Anthropopope, just like the landscape ecology system. Geotope resources are strong in landscape characteristics such as coast and beach, rocks, bedrocks, waterfalls, geology and Jusangjeolli Cliff, Oreum and craters, water resources, and landscape viewpoints. The Biotope resources showed strong ecological characteristics due to large tree and protected tree, Gotjawal, forest road and vegetation communities, biological habitat, vegetation landscape view point. Antropotope include Culture of Jeju Haenyeo and traditional culture, potting and lighthouses, experience facilities, temples and churches, military and beacon facilities, other historical and cultural facilities, and cultural landscape views. Jeju Olle Trail The representative resources for each type of Jeju Olle Trail are coastal, Oreum, Gotjawal, field and Stonewall Fencing farming land, Jeju Village and Stone wall of Jeju. In order to learn about the components and various functions of the resources representing the Olle Trail's ecological culture, the landscape ecological technique was interpreted. Looking at the ecological and cultural characteristics of coastal, the coast includes black basalt rocks, coastal vegetation, coastal grasslands, coastal rock vegetation, winter migratory birds and Jeju haenyeo. Oreum is a unique volcanic topography, which includes circular and oval mountain bodies, oreum vegetation, crater wetlands, the origin and legend of the name of Oreum, the legend of the name of Oreum, the culture of grazing horses, the use of military purposes, the object of folk belief, and the view from the summit. Gotjawal features rocky bumps, unique microclimate formation, Gotjawal vegetation, geographical names, the culture of charcoal being baked in the past, and bizarre shapes of trees and vines. Field walls include the structure and shape of field walls, field cultivation crops, field wall habitats, Jeju agricultural culture, and field walls. The village includes a stone wall and roof structure built from basalt, a pavilion at the entrance of the village, a yard and garden inside the house, a view of the lives of local people, and an alleyway view. These resources have slowly changed with the long lives of humans, and are now unique to Jeju Island. By providing contents specialized for each type of Olle Trail, tourists who walk on Olle will be able to experience the Olle Trail in depth as they learn the story of the resources, and will be able to increase the sustainable use and satisfaction of Jeju Olle Trail users.

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.

Seasonal Circulation and Estuarine Characteristics in the Jinhae and Masan Bay from Three-Dimensional Numerical Experiments (3차원 수치모의 실험을 통한 진해·마산만의 계절별 해수순환과 염하구 특성)

  • JIHA KIM;BYOUNG-JU CHOI;JAE-SUNG CHOI;HO KYUNG HA
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.2
    • /
    • pp.77-100
    • /
    • 2024
  • Circulation, tides, currents, harmful algal blooms, water quality, and hypoxic conditions in Jinhae-Masan Bay have been extensively studied. However, these previous studies primarily focused on short-term variations, and there was limited detailed investigation into the physical mechanisms responsible for ocean circulation in the bays. Oceanic processes in the bays, such as pollutant dispersal, changes on a seasonal time scale. Therefore, this study aimed to understand how the circulation in Jinhae-Masan Bay varies seasonally and to examine the effects of tides, winds, and river discharges on regional ocean circulation. To achieve this, a three-dimensional ocean circulation model was used to simulate circulation patterns from 2016 to 2018, and sensitivity experiments were conducted. This study reveals that convective estuarine circulation develops in Jinhae and Masan Bays, characterized by the inflow of deep oceanic water from the Korea Strait through Gadeoksudo, while surface water flows outward. This deep water intrusion divides into northward and westward branches. In this study, the volume transport was calculated along the direction of bottom channels in each region. The meridional water exchange in the eastern region of Jinhae Bay is 2.3 times greater in winter and 1.4 times greater in summer compared to that of zonal exchange in the western region. In the western region of Jinhae Bay, the circulation pattern varies significantly by season due to changes in the balance of forces. During winter, surface currents flow southward and bottom currents flow northward, strengthening the north-south convective circulation due to the combined effects of northwesterly winds and the slope of the sea surface. In contrast, during summer, southwesterly winds cause surface seawater to flow eastward, and the elevated sea surface in the southeastern part enhances northward barotropic pressure gradient intensifying the eastward surface flow. The density gradient and southward baroclinic pressure gradient increase in the lower layer, causing a strong westward inflow of seawater from Gadeoksudo, enhancing the zonal convective circulation by 26% compared to winter. The convective circulation in the western Jinhae Bay is significantly influenced by both tidal current and wind during both winter and summer. In the eastern Jinhae Bay and Masan Bay, surface water flows outward to the open sea in all seasons, while bottom water flows inward, demonstrating a typical convective estuarine circulation. In winter, the contributions of wind and freshwater influx are significant, while in summer, the influence of mixing by tidal currents plays a major role in the north-south convective circulation. In the eastern Jinhae Bay, tidally driven residual circulation patterns, influenced by the local topography, are distinct. The study results are expected to enhance our understanding of pollutant dispersion, summer hypoxic events, and the abundance of red tide organisms in these bays.

An Investigation of the Current Squeezing Effect through Measurement and Calculation of the Approach Curve in Scanning Ion Conductivity Microscopy (Scanning Ion Conductivity Microscopy의 Approach Curve에 대한 측정 및 계산을 통한 Current Squeezing 효과의 고찰)

  • Young-Seo Kim;Young-Jun Cho;Han-Kyun Shin;Hyun Park;Jung Han Kim;Hyo-Jong Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.54-62
    • /
    • 2024
  • SICM (Scanning Ion Conductivity Microscopy) is a technique for measuring surface topography in an environment where electrochemical reactions occur, by detecting changes in ion conductivity as a nanopipette tip approaches the sample. This study includes an investigation of the current response curve, known as the approach curve, according to the distance between the tip and the sample. First, a simulation analysis was conducted on the approach curves. Based on the simulation results, then, several measuring experiments were conducted concurrently to analyze the difference between the simulated and measured approach curves. The simulation analysis confirms that the current squeezing effect occurs as the distance between the tip and the sample approaches half the inner radius of the tip. However, through the calculations, the decrease in current density due to the simple reduction in ion channels was found to be much smaller compared to the current squeezing effect measured through actual experiments. This suggests that ion conductivity in nano-scale narrow channels does not simply follow the Nernst-Einstein relationship based on the diffusion coefficients, but also takes into account the fluidic hydrodynamic resistance at the interface created by the tip and the sample. It is expected that SICM can be combined with SECM (Scanning Electrochemical Microscopy) to overcome the limitations of SECM through consecutive measurement of the two techniques, thereby to strengthen the analysis of electrochemical surface reactivity. This could potentially provide groundbreaking help in understanding the local catalytic reactions in electroless plating and the behaviors of organic additives in electroplating for various kinds of patterns used in semiconductor damascene processes and packaging processes.

The Present Status and the Preservation Method of the Rice Terrace as Scenic Sites Resources in Northeast Asia (동북아시아 계단식 논의 명승지정 현황 및 보전방안)

  • Youn, Kyung-Sook;Lee, Chang-Hun;Kim, Hyung-Dae;Seo, Woo-Hyun;Lee, Jae-Keun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.4
    • /
    • pp.111-123
    • /
    • 2011
  • This study aims to present the basic materials, which lead us to preserve the Korea Rice Terrace as scenic sites resources and study it continuously, through researching about the present status and the preservation method of the Rice Terrace in Korea, China and Japan. The results of this study are as follows. First, The Rice Terrace has a traditional agricultural technique which minimizing the damage of the scenic view while cultivating the slope. And also, it has the value of one of the Korea unique traditional scenic views. However, The no cultivation land or disappearing desert land of rice terrace were increasing by the disadvantage of operation in land cultivation. Therefore, The Government must need preparing the base of scene resources excavation by executed the established of Korea Rice Terrace Database for preserving of Korea traditional scene. however it is getting to disappearance. And also, The High valued of Rice Terrace by cultural and scenic view which is must managed by designation of scenic sites or monument. Second, The internal and external reference book researched and analyzed results are as followings for understanding about Korea Rice Terrace feature. First of all, The Rice Terrace's dictionary meaning is just difference by each nations. However, Generally speaking that It means the terraced land by cultivated of sloped land. The Rice Terrace has cross relation with mountain valley and piedmont slope cultivation in location of condition. It occurred era is before approximately estimated from 3000 of years until 6000 of years. It can divide two type by topography shape those are slope and valley type. However, The natural element of forest has very big position in this part. But, The Rice Terrace is just managed and designated by the scenic sites with the Cultural Properties Protection Law. It must needs more binding force and effectiveness for the Rice Terrace scenic view plan establishment by scenic laws and farming and fishing village laws etc. I think that it must need the Rice Terrace related law establishment as soon as possible for efficient preservation and management of the Rice Terrace. Third, The Rice Terrace were researched and analyzed results are as followings those were executed at the Korea, China and Japan. The Korea and Japan have good Rice Terrace Characteristic. And also, The high valued scenic sites area were good managed by the Cultural Properties Protection Law as well as the superior scenic valued Rice Terrace in China. Those are also managed by designated scenic sites for protection and preservation positively. Those were managed by each autonomous district management Department. The each nation's related laws of Rice Terrace protection were just little bit different. However, The basic purpose is same. for example, it based on superior scenic view preservation and protection. Especially, The Japan's Cultural Properties Law and Scenic law linkage, and China Autonomous district legislation and effectiveness. The Korea Government must need above elements for Korea Rice Terrace culture and scenic view preservation. Fourth, We need inducing the owner system and the policy of Rice Terrace preservation promotion association for efficient preservation of Rice Terrace in japan. The owner system in japan gives the owner of the land a permission to rent the land to Rice Terrace preservation promotion association and the local government. In this system the village would be revitalized by commons in the way of the management of the terraces, beautifying the area around the terraces and etc. And also, Making the each village management operating system for Rice Terrace management through educating civilization. The civilization could receive quick help from a consultative body comprised of experts such as representatives of Cultural Heritage Administration and professors. And it is in a hurry to solve the problem of revitalization of the region by exchange between cities and the village.