• Title/Summary/Keyword: local similarity

Search Result 364, Processing Time 0.029 seconds

Generating Pylogenetic Tree of Homogeneous Source Code in a Plagiarism Detection System

  • Ji, Jeong-Hoon;Park, Su-Hyun;Woo, Gyun;Cho, Hwan-Gue
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.809-817
    • /
    • 2008
  • Program plagiarism is widespread due to intelligent software and the global Internet environment. Consequently the detection of plagiarized source code and software is becoming important especially in academic field. Though numerous studies have been reported for detecting plagiarized pairs of codes, we cannot find any profound work on understanding the underlying mechanisms of plagiarism. In this paper, we study the evolutionary process of source codes regarding that the plagiarism procedure can be considered as evolutionary steps of source codes. The final goal of our paper is to reconstruct a tree depicting the evolution process in the source code. To this end, we extend the well-known bioinformatics approach, a local alignment approach, to detect a region of similar code with an adaptive scoring matrix. The asymmetric code similarity based on the local alignment can be considered as one of the main contribution of this paper. The phylogenetic tree or evolution tree of source codes can be reconstructed using this asymmetric measure. To show the effectiveness and efficiency of the phylogeny construction algorithm, we conducted experiments with more than 100 real source codes which were obtained from East-Asia ICPC(International Collegiate Programming Contest). Our experiments showed that the proposed algorithm is quite successful in reconstructing the evolutionary direction, which enables us to identify plagiarized codes more accurately and reliably. Also, the phylogeny construction algorithm is successfully implemented on top of the plagiarism detection system of an automatic program evaluation system.

Image Based Text Matching Using Local Crowdedness and Hausdorff Distance (지역 밀집도 및 Hausdorff 거리를 이용한 영상기반 텍스트 매칭)

  • Son, Hwa-Jeong;Kim, Ji-Soo;Park, Mi-Seon;Yoo, Jae-Myeong;Kim, Soo-Hyung
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.10
    • /
    • pp.134-142
    • /
    • 2006
  • In this paper, we investigate a Hausdorff distance, which is used for the measurement of image similarity, to see whether it is also effective for document retrieval. The proposed method uses a local crowdedness and a Hausdorff distance to locate text images by determining whether a pair of images scanned at different time comes from the same text or not. To reduce the processing time, which is one of the disadvantages of a Hausdorff distance algorithm, we adopt a local crowdedness for feature point extraction. We apply the proposed method to 190 pairs of the same class and 190 pairs of the different class collected from postal envelop images. The results show that the modified Hausdorff distance proposed in this paper performed well in locating the tort region and calculating the degree of similarity between two images. An improvement of accuracy by 2.7% and 9.0% has been obtained, compared to a binary correlation method and the original Hausdorff distance method, respectively.

  • PDF

Automatic Target Recognition by selecting similarity-transform-invariant local and global features (유사변환에 불변인 국부적 특징과 광역적 특징 선택에 의한 자동 표적인식)

  • Sun, Sun-Gu;Park, Hyun-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.370-380
    • /
    • 2002
  • This paper proposes an ATR (Automatic Target Recognition) algorithm for identifying non-occluded and occluded military vehicles in natural FLIR (Forward Looking InfraRed) images. After segmenting a target, a radial function is defined from the target boundary to extract global shape features. Also, to extract local shape features of upper region of a target, a distance function is defined from boundary points and a line between two extreme points. From two functions and target contour, four global and four local shape features are proposed. They are much more invariant to translation, rotation and scale transform than traditional feature sets. In the experiments, we show that the proposed feature set is superior to the traditional feature sets with respect to the similarity-transform invariance and recognition performance.

Phytosociological Study and Spatial autocorrelation on the Forest Vegetation of Mt. Yeonae at Gijang-gun

  • Choi, Byoung-Ki;Huh, Man Kyu
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1373-1381
    • /
    • 2013
  • Mt. Yeonae is at Gijang-gun in Busan and is surrounded by farming lands on three sides. The search for the species composition and dynamics of local communities were studied at Mt. Yeonae of how spatial similarity decays with geographic distance. The index values of Z$\ddot{u}$rich-Montpellier School's phytosociology at the 12 plots was compared to a distribution of similarly using 20 m quadrates at 12 sites. The specific communities were five including Pinus densiflora - Quercus variabilis community. Six species were significant similarity between neighboring sites by using the spatial autocorrelation coefficient, Moran's I. If Mt. Yeonae was destroyed by an artificial action, some spatial correlated species such as P. densiflora and Q. variabilis will be collapsed because of no maintaining the effective population sizes.

Heat and mass transfer of a second grade magnetohydrodynamic fluid over a convectively heated stretching sheet

  • Das, Kalidas;Sharma, Ram Prakash;Sarkar, Amit
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.330-336
    • /
    • 2016
  • The present work is concerned with heat and mass transfer of an electrically conducting second grade MHD fluid past a semi-infinite stretching sheet with convective surface heat flux. The analysis accounts for thermophoresis and thermal radiation. A similarity transformations is used to reduce the governing equations into a dimensionless form. The local similarity equations are derived and solved using Nachtsheim-Swigert shooting iteration technique together with Runge-Kutta sixth order integration scheme. Results for various flow characteristics are presented through graphs and tables delineating the effect of various parameters characterizing the flow. Our analysis explores that the rate of heat transfer enhances with increasing the values of the surface convection parameter. Also the fluid velocity and temperature in the boundary layer region rise significantly for increasing the values of thermal radiation parameter.

Robust Character Image Retrieval Method Using Bipartite Matching (Bipartite Matching을 이용한 강인한 캐릭터 영상 검색 방법)

  • 이상엽;김회율
    • Journal of Broadcast Engineering
    • /
    • v.7 no.2
    • /
    • pp.136-144
    • /
    • 2002
  • In this paper, a novel approach that makes use of both shape and color information to retrieve character images in terms of similarity distance from a large-capacity image database or from a streaming image database, in particular, character image logo or trademark. In order to combine both features of completely different characteristics bipartite matching has been employed in computing similarity distance, The proposed method turned out to bealso very effective in matching natural object or human-drawn images whose shape varies substantially.

Gene Algorithm of Crowd System of Data Mining

  • Park, Jong-Min
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.40-44
    • /
    • 2012
  • Data mining, which is attracting public attention, is a process of drawing out knowledge from a large mass of data. The key technique in data mining is the ability to maximize the similarity in a group and minimize the similarity between groups. Since grouping in data mining deals with a large mass of data, it lessens the amount of time spent with the source data, and grouping techniques that shrink the quantity of the data form to which the algorithm is subjected are actively used. The current grouping algorithm is highly sensitive to static and reacts to local minima. The number of groups has to be stated depending on the initialization value. In this paper we propose a gene algorithm that automatically decides on the number of grouping algorithms. We will try to find the optimal group of the fittest function, and finally apply it to a data mining problem that deals with a large mass of data.

Cavitation Compliance in 1D Part-load Vortex Models

  • Dorfler, Peter K
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.197-208
    • /
    • 2017
  • When Francis turbines operate at partial load, residual swirl in the draft tube causes low-frequency pulsation of pressure and power output. Scale effects and system response may bias the prediction of prototype behavior based on laboratory tests, but could be overcome by means of a 1D analytical model. This paper deals with the two most important features of such a model, the compliance and the source of excitation. In a distributed-parameter version, compliance should be represented as an exponential function of local pressure. Lack of similarity due to different Froude number can thus be compensated. The normally unknown gas content in the vortex cavity has significant influence on the pulsation, and should therefore be measured and considered as a test parameter.

NBLAST: a graphical user interface-based two-way BLAST software with a dot plot viewer

  • Choi, Beom-Soon;Choi, Seon Kang;Kim, Nam-Soo;Choi, Ik-Young
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.36.1-36.6
    • /
    • 2022
  • BLAST, a basic bioinformatics tool for searching local sequence similarity, has been one of the most widely used bioinformatics programs since its introduction in 1990. Users generally use the web-based NCBI-BLAST program for BLAST analysis. However, users with large sequence data are often faced with a problem of upload size limitation while using the web-based BLAST program. This proves inconvenient as scientists often want to run BLAST on their own data, such as transcriptome or whole genome sequences. To overcome this issue, we developed NBLAST, a graphical user interface-based BLAST program that employs a two-way system, allowing the use of input sequences either as "query" or "target" in the BLAST analysis. NBLAST is also equipped with a dot plot viewer, thus allowing researchers to create custom database for BLAST and run a dot plot similarity analysis within a single program. It is available to access to the NBLAST with http://nbitglobal.com/nblast.

A Modified Steering Kernel Filter for AWGN Removal based on Kernel Similarity

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.195-203
    • /
    • 2022
  • Noise generated during image acquisition and transmission can negatively impact the results of image processing applications, and noise removal is typically a part of image preprocessing. Denoising techniques combined with nonlocal techniques have received significant attention in recent years, owing to the development of sophisticated hardware and image processing algorithms, much attention has been paid to; however, this approach is relatively poor for edge preservation of fine image details. To address this limitation, the current study combined a steering kernel technique with adaptive masks that can adjust the size according to the noise intensity of an image. The algorithm sets the steering weight based on a similarity comparison, allowing it to respond to edge components more effectively. The proposed algorithm was compared with existing denoising algorithms using quantitative evaluation and enlarged images. The proposed algorithm exhibited good general denoising performance and better performance in edge area processing than existing non-local techniques.