• Title/Summary/Keyword: local similarity

Search Result 364, Processing Time 0.034 seconds

Hybrid Affine Registration Using Intensity Similarity and Feature Similarity for Pathology Detection

  • June-Sik Kim;Ho-Sung Kim;Jong-Min Lee;Jae-Seok Kim;In-Young Kim;Sun I. Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.39-47
    • /
    • 2002
  • The objective of this study is to provide a Precise form of spatial normalization with affine transformation. The quantitative comparison of the brain architecture across different subjects requires a common coordinate system. For the common coordinate system, not only global brain but also a local region of interest should be spatially normalized. Registration using mutual information generally matches the whose brain well. However. a region of interest may not be normalized compared to the feature-based methods with the landmarks. The hybrid method of this Paper utilizes feature information of the local region as well as intensity similarity. Central gray nuclei of a brain including copus callosum, which is used for feature in Schizophrenia detection, is appropriately normalized by the hybrid method. In the results section. our method is compared with mutual information only method and Talairach mapping with schizophrenia Patients. and is shown how it accurately normalizes feature .

Quantitative Measure of the Changes of Migration Patterns Using Cosine Similarity (코사인 유사도를 이용한 이주패턴 변화의 정량적 측정)

  • Han, Yicheol
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • Migration is defined as the movement of people between residential places, and represents interactions between regions. Changes in migration involve changes in both the number of migrants toward/from regions and migration patterns across regions. However, most migration studies have focused only on the change in migrants, while no empirical study captures changes in migration patterns. In this paper, I present a function using the cosine similarity to measure changes in migration patterns, and apply it to 2001-2016 migration data of Korea. The results show that the migration patterns of Korea shifted in 2007, resulting in two distinct clusters. Local areas experienced various migration pattern changes despite few changes in the number of migrants.

Face Representation and Face Recognition using Optimized Local Ternary Patterns (OLTP)

  • Raja, G. Madasamy;Sadasivam, V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.402-410
    • /
    • 2017
  • For many years, researchers in face description area have been representing and recognizing faces based on different methods that include subspace discriminant analysis, statistical learning and non-statistics based approach etc. But still automatic face recognition remains an interesting but challenging problem. This paper presents a novel and efficient face image representation method based on Optimized Local Ternary Pattern (OLTP) texture features. The face image is divided into several regions from which the OLTP texture feature distributions are extracted and concatenated into a feature vector that can act as face descriptor. The recognition is performed using nearest neighbor classification method with Chi-square distance as a similarity measure. Extensive experimental results on Yale B, ORL and AR face databases show that OLTP consistently performs much better than other well recognized texture models for face recognition.

AN APPROXIMATE GREEDY ALGORITHM FOR TAGSNP SELECTION USING LINKAGE DISEQUILIBRIUM CRITERIA

  • Wang, Ying;Feng, Enmin;Wang, Ruisheng
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.493-500
    • /
    • 2008
  • In this paper, we first construct a mathematical model for tagSNP selection based on LD measure $r^2$, then aiming at this kind of model, we develop an efficient algorithm, which is called approximate greedy algorithm. This algorithm is able to make up the disadvantage of the greedy algorithm for tagSNP selection. The key improvement of our approximate algorithm over greedy algorithm lies in that it adds local replacement(or local search) into the greedy search, tagSNP is replaced with the other SNP having greater similarity degree with it, and the local replacement is performed several times for a tagSNP so that it can improve the tagSNP set of the local precinct, thereby improve tagSNP set of whole precinct. The computational results prove that our approximate greedy algorithm can always find more efficient solutions than greedy algorithm, and improve the tagSNP set of whole precinct indeed.

  • PDF

An Algorithm for multiple local alignment with Normalized Local Alignment Algorithm (정규화된 지역 정렬 알고리즘을 적용한 다중 지역 정렬 알고리즘)

  • Jang, Suk-Bong;Lee, Gye-Sung
    • Annual Conference of KIPS
    • /
    • 2003.05b
    • /
    • pp.1019-1022
    • /
    • 2003
  • 두 서열을 비교하여 유사성(similarity)이나 상동성(homology)를 찾기 위한 서열 정렬 방법 중에서 지역 정렬에 많이 사용되는 Smith-Waterman 알고리즘의 제한점인 Mosaic effect와 Shadow effect를 극복하기 위한 효율적인 방법을 살펴보고, 하나의 최대 값이 아닌 다수개의 최대 값을 찾아 다수개를 정렬함으로써 서열내에 존재 할 수 있는 다수개의 지역 정렬을 찾고 Normalized sequence alignment 알고리즘을 이용하여 서열 정렬된 결과들의 우선 순위를 매겨본다.

  • PDF

A DoS Detection Method Based on Composition Self-Similarity

  • Jian-Qi, Zhu;Feng, Fu;Kim, Chong-Kwon;Ke-Xin, Yin;Yan-Heng, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1463-1478
    • /
    • 2012
  • Based on the theory of local-world network, the composition self-similarity (CSS) of network traffic is presented for the first time in this paper for the study of DoS detection. We propose the concept of composition distribution graph and design the relative operations. The $(R/S)^d$ algorithm is designed for calculating the Hurst parameter. Based on composition distribution graph and Kullback Leibler (KL) divergence, we propose the composition self-similarity anomaly detection (CSSD) method for the detection of DoS attacks. We evaluate the effectiveness of the proposed method. Compared to other entropy based anomaly detection methods, our method is more accurate and with higher sensitivity in the detection of DoS attacks.

A Comparative Study on Similarity Measure Techniques for Cross-Project Defect Prediction (교차 프로젝트 결함 예측을 위한 유사도 측정 기법 비교 연구)

  • Ryu, Duksan;Baik, Jongmoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.6
    • /
    • pp.205-220
    • /
    • 2018
  • Software defect prediction is helpful for allocating valuable project resources effectively for software quality assurance activities thanks to focusing on the identified fault-prone modules. If historical data collected within a company is sufficient, a Within-Project Defect Prediction (WPDP) can be utilized for accurate fault-prone module prediction. In case a company does not maintain historical data, it may be helpful to build a classifier towards predicting comprehensible fault prediction based on Cross-Project Defect Prediction (CPDP). Since CPDP employs different project data collected from other organization to build a classifier, the main obstacle to build an accurate classifier is that distributions between source and target projects are not similar. To address the problem, because it is crucial to identify effective similarity measure techniques to obtain high performance for CPDP, In this paper, we aim to identify them. We compare various similarity measure techniques. The effectiveness of similarity weights calculated by those similarity measure techniques are evaluated. The results are verified using the statistical significance test and the effect size test. The results show k-Nearest Neighbor (k-NN), LOcal Correlation Integral (LOCI), and Range methods are the top three performers. The experimental results show that predictive performances using the three methods are comparable to those of WPDP.

Three-Dimensional Shape Recognition and Classification Using Local Features of Model Views and Sparse Representation of Shape Descriptors

  • Kanaan, Hussein;Behrad, Alireza
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.343-359
    • /
    • 2020
  • In this paper, a new algorithm is proposed for three-dimensional (3D) shape recognition using local features of model views and its sparse representation. The algorithm starts with the normalization of 3D models and the extraction of 2D views from uniformly distributed viewpoints. Consequently, the 2D views are stacked over each other to from view cubes. The algorithm employs the descriptors of 3D local features in the view cubes after applying Gabor filters in various directions as the initial features for 3D shape recognition. In the training stage, we store some 3D local features to build the prototype dictionary of local features. To extract an intermediate feature vector, we measure the similarity between the local descriptors of a shape model and the local features of the prototype dictionary. We represent the intermediate feature vectors of 3D models in the sparse domain to obtain the final descriptors of the models. Finally, support vector machine classifiers are used to recognize the 3D models. Experimental results using the Princeton Shape Benchmark database showed the average recognition rate of 89.7% using 20 views. We compared the proposed approach with state-of-the-art approaches and the results showed the effectiveness of the proposed algorithm.

Scene Change Detection Using Local Information (지역적 정보를 이용한 장면 전환 검출)

  • Shin, Seong-Yoon;Shin, Kwang-Sung;Lee, Hyun-Chang;Jin, Chan-Yong;Rhee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.151-152
    • /
    • 2012
  • This paper proposes a Scene Change Detection method using the local decision tree and clustering. The local decision tree detects cluster boundaries wherein local scenes occur, in such a way as to compare time similarity distributions among the difference values between detected scenes and their adjacent frames, and group an unbroken sequence of frames with similarities in difference value into a cluster unit.

  • PDF

Scene Change Detection Using Local Information (지역적 정보를 이용한 장면 전환 검출)

  • Shin, Seong-Yoon;Jin, Chan-Yong;Rhee, Yang-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1199-1203
    • /
    • 2012
  • This paper proposes a Scene Change Detection method using the local decision tree and clustering. The local decision tree detects cluster boundaries wherein local scenes occur, in such a way as to compare time similarity distributions among the difference values between detected scenes and their adjacent frames, and group an unbroken sequence of frames with similarities in difference value into a cluster unit.