• Title/Summary/Keyword: local similarity

Search Result 364, Processing Time 0.024 seconds

A Study on Brand Language Localization Affecting Original Brand Image Similarity Recognition and Purchase Intentions (브랜드의 언어 현지화가 고유 브랜드와의 이미지 유사성 인식과 구매의도에 미치는 영향)

  • Jhun, Ji-Young;Hong, Jong-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.24 no.3
    • /
    • pp.286-294
    • /
    • 2009
  • The purpose of this study was to determine whether foodservice brand language localization affects consumer attitudes in terms of similar brand image recognition with an original brand. Many global foodservice companies have tried to modify their own brand identity according to local situations in order to attract more consumers. According to this study's results, consumers who similarly recognized both the original brand image and localization brand image tended to have greater purchase intention than those who did not recognize them similarly. In addition, when the original brand identity was changed to the local language, consumers more similarly conceived the original brand image and localization. And for local store marketing, foodservice companies should have a thorough marketing research plan since there can be difference results according to brand name recognition gaps or demographic characteristics. Original brand image similarity recognition by consumers affected their attitudes. In other words, the group that similarly recognized both the original brand company image and the localization brand company image tended to have greater purchase intention. Because brand language plays an important role in consumer attitudes with respect to recognizing a brand and distinguishing another brand, this study suggests that franchise foodservice companies have a local store marketing plan.

Mixed-Norm Patch Similarity Search for Self-Example-based Single Image Super-Resolution (자가 표본 기반 단일 영상 초해상도 복원을 위한 혼합 놈 패치 유사도 검색)

  • Oh, Jong-Geun;Hong, Min-Cheol
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.491-494
    • /
    • 2018
  • This paper presents a similarity search method based on mixed norm for enhancing self-example-based single image super-resolution. In order to incorporate the local statistical characteristics of the patches into the super-resolution image reconstruction, we propose a method to determine the order of the norm according to the patch inclination and use it as a similarity search between patches. Experimental results demonstrate that the proposed similarity search method has the capability to improve the performance of existing search method.

An Adaptive Algorithm for Plagiarism Detection in a Controlled Program Source Set (제한된 프로그램 소스 집합에서 표절 탐색을 위한 적응적 알고리즘)

  • Ji, Jeong-Hoon;Woo, Gyun;Cho, Hwan-Gue
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.12
    • /
    • pp.1090-1102
    • /
    • 2006
  • This paper suggests a new algorithm for detecting the plagiarism among a set of source codes, constrained to be functionally equivalent, such are submitted for a programming assignment or for a programming contest problem. The typical algorithms largely exploited up to now are based on Greedy-String Tiling, which seeks for a perfect match of substrings, and analysis of similarity between strings based on the local alignment of the two strings. This paper introduces a new method for detecting the similar interval of the given programs based on an adaptive similarity matrix, each entry of which is the logarithm of the probabilities of the keywords based on the frequencies of them in the given set of programs. We experimented this method using a set of programs submitted for more than 10 real programming contests. According to the experimental results, we can find several advantages of this method compared to the previous one which uses fixed similarity matrix(+1 for match, -1 for mismatch, -2 for gap) and also can find that the adaptive similarity matrix can be used for detecting various plagiarism cases.

Plane Detection Method Using 3-D Characteristics at Depth Pixel Unit (깊이 화소 단위의 3차원 특성을 통한 평면 검출 방법)

  • Lee, Dong-Seok;Kwon, Soon-Kak
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.580-587
    • /
    • 2019
  • In this paper, a plane detection method using depth information is proposed. 3-D characteristics of a pixel are defined as a direction and length of a normal vector whose is calculated from a plane consisting of a local region centered on the pixel. Image coordinates of each pixel are transformed to 3-D coordinates in order to obtain the local planes. Regions of each plane are detected by calculating similarity of the 3-D characteristics. The similarity of the characteristics consists of direction and distance similarities of normal vectors. If the similarity of the characteristics between two adjacent pixels is enough high, the two pixels are regarded as consisting of same plane. Simulation results show that the proposed method using the depth picture is more accurate for detecting plane areas than the conventional method.

Gaussian Noise Reduction Technique using Improved Kernel Function based on Non-Local Means Filter (비지역적 평균 필터 기반의 개선된 커널 함수를 이용한 가우시안 잡음 제거 기법)

  • Lin, Yueqi;Choi, Hyunho;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.73-76
    • /
    • 2018
  • A Gaussian noise is caused by surrounding environment or channel interference when transmitting image. The noise reduces not only image quality degradation but also high-level image processing performance. The Non-Local Means (NLM) filter finds similarity in the neighboring sets of pixels to remove noise and assigns weights according to similarity. The weighted average is calculated based on the weight. The NLM filter method shows low noise cancellation performance and high complexity in the process of finding the similarity using weight allocation and neighbor set. In order to solve these problems, we propose an algorithm that shows an excellent noise reduction performance by using Summed Square Image (SSI) to reduce the complexity and applying the weighting function based on a cosine Gaussian kernel function. Experimental results demonstrate the effectiveness of the proposed algorithm.

  • PDF

A Max-Flow-Based Similarity Measure for Spectral Clustering

  • Cao, Jiangzhong;Chen, Pei;Zheng, Yun;Dai, Qingyun
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.311-320
    • /
    • 2013
  • In most spectral clustering approaches, the Gaussian kernel-based similarity measure is used to construct the affinity matrix. However, such a similarity measure does not work well on a dataset with a nonlinear and elongated structure. In this paper, we present a new similarity measure to deal with the nonlinearity issue. The maximum flow between data points is computed as the new similarity, which can satisfy the requirement for similarity in the clustering method. Additionally, the new similarity carries the global and local relations between data. We apply it to spectral clustering and compare the proposed similarity measure with other state-of-the-art methods on both synthetic and real-world data. The experiment results show the superiority of the new similarity: 1) The max-flow-based similarity measure can significantly improve the performance of spectral clustering; 2) It is robust and not sensitive to the parameters.

An Improved Object Detection Method using Hausdorff Distance Modified by Local Pattern Similarity (국지적 패턴 유사도에 의해 수정된 Hausdorff 거리를 이용한 개선된 객체검출)

  • Cho, Kyoung-Sik;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.147-152
    • /
    • 2007
  • Face detection is a crucial part of the face recognition system. It determines the performance of the whole recognition system. Hausdorff distance metric has been used in face detection and recognition with good results. It defines the distance metric based only on the geometric similarity between two sets or points. However, not only the geometry but also the local patterns around the points are available in most cases. In this paper a new Hausdorff distance measure is proposed that makes hybrid use of the similarity of the geometry and the local patterns around the points. Several experiments shows that the new method outperforms the conventional method.

  • PDF

A Study on the Performance of Similarity Indices and its Relationship with Link Prediction: a Two-State Random Network Case

  • Ahn, Min-Woo;Jung, Woo-Sung
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1589-1595
    • /
    • 2018
  • Similarity index measures the topological proximity of node pairs in a complex network. Numerous similarity indices have been defined and investigated, but the dependency of structure on the performance of similarity indices has not been sufficiently investigated. In this study, we investigated the relationship between the performance of similarity indices and structural properties of a network by employing a two-state random network. A node in a two-state network has binary types that are initially given, and a connection probability is determined from the state of the node pair. The performances of similarity indices are affected by the number of links and the ratio of intra-connections to inter-connections. Similarity indices have different characteristics depending on their type. Local indices perform well in small-size networks and do not depend on whether the structure is intra-dominant or inter-dominant. In contrast, global indices perform better in large-size networks, and some such indices do not perform well in an inter-dominant structure. We also found that link prediction performance and the performance of similarity are correlated in both model networks and empirical networks. This relationship implies that link prediction performance can be used as an approximation for the performance of the similarity index when information about node type is unavailable. This relationship may help to find the appropriate index for given networks.

Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 2 - Using Negative Feature Decomposition (계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 2 - 절삭가공 특징형상 분할방식 이용)

  • 김용세;강병구;정용희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.51-61
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes.. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the second one of the two companion papers, describes the similarity assessment method using NFD.

Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 1 - Using Convex Decomposition and Form Feature Decomposition (계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 1 - 볼록입체 분할방식 및 특징형상 분할방식 이용)

  • 김용세;강병구;정용희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.44-50
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the first one of the two companion papers, describes the similarity assessment methods using convex decomposition and FFD.