• Title/Summary/Keyword: local moment

Search Result 367, Processing Time 0.027 seconds

Finite element evaluation of the strength behaviour of high-strength steel column web in transverse compression

  • Coelho, Ana M. Girao;Bijlaard, Frans S.K.
    • Steel and Composite Structures
    • /
    • v.10 no.5
    • /
    • pp.385-414
    • /
    • 2010
  • In current European Standard EN 1993, the moment-rotation characteristics of beam-to-column joints made from steel with a yield stress > 460MPa are obtained from elastic design procedures. The strength of the joint basic components, such as the column web subject to local transverse compression, is thus limited to the yield resistance rather than the plastic resistance. With the recent developments of higher strength steel grades, the need for these restrictions should be revisited. However, as the strength of the steel is increased, the buckling characteristics become more significant and thus instability phenomena may govern the design. This paper summarizes a comprehensive set of finite element parametric studies pertaining to the strength behaviour of high-strength steel unstiffened I-columns in transverse compression. The paper outlines the implementation and validation of a three-dimensional finite element model and presents the relevant numerical test results. The finite element predictions are evaluated against the strength values anticipated by the EN 1993 for conventional steel columns and recommendations are made for revising the specifications.

Micro modelling of masonry walls by plane bar elements for detecting elastic behavior

  • Doven, Mahmud Sami;Kafkas, Ugur
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.643-649
    • /
    • 2017
  • Masonry walls are amongst the oldest building systems. A large portion of the research on these structures focuses on the load-bearing walls. Numerical methods have been generally used in modelling load-bearing walls during recent years. In this context, macro and micro modelling techniques emerge as widely accepted techniques. Micro modelling is used to investigate the local behaviour of load-bearing walls in detail whereas macro modelling is used to investigate the general behaviour of masonry buildings. The main objective of this study is to investigate the elastic behaviour of the load- bearing walls in masonry buildings by using micro modelling technique. In order to do this the brick and mortar units of the masonry walls are modelled by the combination of plane truss elements and plane frame elements with no shear deformations. The model used in this study has fewer unknowns then the models encountered in the references. In this study the vertical frame elements have equivalent elasticity modulus and moment of inertia which are calculated by the developed software. Under in-plane static loads the elastic displacements of the masonry walls, which are encountered in literature, are calculated by the developed software, where brick units are modelled by plane frame elements, horizontal joints are modelled by vertical frame elements and vertical joints are modelled by horizontal plane truss elements. The calculated results are compatible with those given in the references.

Electronic and Magnetic Properties of Rare-earth Transition Metal Compound : $LaCo_{13}$ ($LaCo_{13}$ 희토류-전이금속 화합물의 전자기적 물성연구)

  • 민병일;손진군
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 1993
  • Electronic and magnetic proper tis of the rare-earth transition metal compound, $LaCo_{13}$, are investigated by performing self-consistent local density functional LMTO (linearized muffin-tin orbital) band structure calculations for both paramagnetic and ferromagnetic phases of $LaCo_{13}$. The calculated magnetic moments for the two types of Co atoms, Co I and Co II, are 1.34 and $1.65{\mu}_{B}$, respectively. The average magnetic moment of Co atoms in the ferromagnetic phase of $LaCo_{13}$ is estimated to be $1.60{\mu}_{B}$, which is in fairly good agreement with the experimental values, $1.56~1.68{\mu}_{B}$.

  • PDF

Free vibration analysis of rotating beams with random properties

  • Hosseini, S.A.A.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.293-312
    • /
    • 2005
  • In this paper, free vibration of rotating beam with random properties is studied. The cross-sectional area, elasticity modulus, moment of inertia, shear modulus and density are modeled as random fields and the rotational speed as a random variable. To study uncertainty, stochastic finite element method based on second order perturbation method is applied. To discretize random fields, the three methods of midpoint, interpolation and local average are applied and compared. The effects of rotational speed, setting angle, random property variances, discretization scheme, number of elements, correlation of random fields, correlation function form and correlation length on "Coefficient of Variation" (C.O.V.) of first mode eigenvalue are investigated completely. To determine the significant random properties on the variation of first mode eigenvalue the sensitivity analysis is performed. The results are studied for both Timoshenko and Bernoulli-Euler rotating beam. It is shown that the C.O.V. of first mode eigenvalue of Timoshenko and Bernoulli-Euler rotating beams are approximately identical. Also, compared to uncorrelated random fields, the correlated case has larger C.O.V. value. Another important result is, where correlation length is small, the convergence rate is lower and more number of elements are necessary for convergence of final response.

An Objective Quality Assessment Based on Gabor Wavelet (Gabor 웨이블릿 기반 객관적 화질 평가)

  • 엄민영;최윤식;장석각;조봉관
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.81-88
    • /
    • 2004
  • In this paper, we propose a new objective quality assessment method considering the human visual perception characteristics. A subjective quality assessment is obtained by the response of the receptive field in the primary visual cortex and a human's eye can't focus on all of the visual range in a moment. Take advantage of two facts above, we apply Gabor wavelet transform which is well fit the receptive field in the cortex, to divided constant sized subblocks. Then a local distortion of the subblocks and a global distortion for the entire image are calculated in order. The proposed method has been evaluated using video test sequences provided by the Video Quality Experts Group (VQEG). The experimental results show that good correlation with human perception is obtained using the proposed metric, which is what we called GPSNR.

Barrier Function Method in Reliability Based Design Optimization (장애함수법에 의한 신뢰성기반 최적설계)

  • Lee, Tae-Hee;Choi, Woon-Yong;Kim, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1130-1135
    • /
    • 2003
  • The need to increase the reliability of a structural system has been significantly brought in the procedure of real designs to consider, for instance, the material properties or geometric dimensions that reveal a random or incompletely known nature. Reliability based design optimization of a real system now becomes an emerging technique to achieve reliability, robustness and safety of these problems. Finite element analysis program and the reliability analysis program are necessary to evaluate the responses and the probabilities of failure of the system, respectively. Moreover, integration of these programs is required during the procedure of reliability based design optimization. It is well known that reliability based design optimization can often have so many local minima that it cannot converge to the specified probability of failure. To overcome this problem, barrier function method in reliability based design optimization is suggested. To illustrate the proposed formulation, reliability based design optimization of a bracket is performed. AMV and FORM are employed for reliability analysis and their optimization results are compared based on the accuracy and efficiency.

  • PDF

A Study of Static Unstable Behavioral Characteristics of Cable Dome Structures according to the Structural System (구조시스템에 따른 케이블 돔의 정적 불안정거동 특성에 관한 연구)

  • Cho, In-Ki;Kim, Hyung-Seok;Kim, Seung-Deog;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.131-138
    • /
    • 2004
  • The cable structure is a kind of ductile structural system using the tension cable and compression column as a main element. From mechanical characteristics of the structural material, it is profitable to be subjected to the axial forces than bending moment or shear forces. And we haweto consider the local buckling when it is subjected to compression forces, but tension member can be used until the failure strength. So we can say that the tension member is the most excellent structural member. Cable dome structures are made up of only the tension cable and compression column considering these mechanical efficiency and a kind of structural system. In this system, the compression members are connected by using tension members, not connected directly each other. Also, this system is lightweight and easy to construct. But, the cable dome structural system has a danger of global buckling as external load increases. That is, as the axisymmetric structure is subjected to the axisymmetric load, the unsymmetric deformation mode is happened at some critical point and the capacity of the structure is rapidly lowered by this reason. This phenomenon Is the bifurcation and we have to reflect this in the design process of the large space structures. In this study, We investigated the nonlinear unstable phenomenon of the Geiger, Zetlin and Flower-type cable dome.

  • PDF

Development of Real-time Condition Monitoring System for Container Cranes (컨테이너 크레인 실시간 설비진단 시스템 개발)

  • Jung, D.U.;Choo, Y.Y.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.18-23
    • /
    • 2008
  • This paper describes development of real-time condition monitoring system to observe state of a container crane in a port. To analyze the state of a crane, the strength and the direction of wind are measured with sensors along with the load resulted a crane at the moment. The measured signals are processed by especially developed conditioning board and converted into digital data. Measured data are analyzed to define the state of the crane at an indicator. For transmission of these data to the indicator, we implemented wireless sensor network based on IEEE 802.15.4 MAC(Media Access Control) protocol and Bluetooth network protocol. To extend the networking distance between the indicator and sensor nodes, the shortest path routing algorithm was applied for WSN(Wireless Sensor Network) networks. The indicator sends the state information of the crane to monitoring server through IEEE 802.11 b wireless LAN(Local Area Network). Monitoring server decides whether alarm should be issued or not. The performance of developed WSN and Bluetooth network were evaluated and analyzed in terms of communication delay and throughput.

  • PDF

4f spin dynamics in TbNi$_2$B$_2$C by $^{11}$B NMR

  • Lee, K.H.;Seo, S.W.;Kim, D.H.;Khang, K.H.;Seo, H.S.;Hwang, C.S.;Hong, K.S.;Cho, B.K.;Lee, W.C.;Lee, Moo-Hee
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.61-64
    • /
    • 2000
  • $^{11}$B NMR measurements have been performed to investigate local electronic structure and 4f spin dynamics for TbNi$_2$B$_2$C single crystal. $^{11}$B NMR spectra show three resonance peaks due to the quadrupolar interaction. Shift and linewidth are huge and strongly temperature-dependent. In addition, both are proportional to magnetic susceptibility, indicating that the hyperfine field at the boron site originates from the 4f spins of Tb. $^{11}$B NMR shift and relaxation rates show high anisotropy for field parallel and perpendicular to the c-axis. Anisotropy of the shift and the relaxation rates suggests that the hyperfine field perpendicular to the c-axis is larger.

  • PDF

Evaluation for Confined Effects by the Sectional Properties of Concrete Filled Steel Tube Columns (콘크리트 충전형 압축부재의 단면특성에 따른 구속효과 평가)

  • Park, Kuk-Dong;Hwang, Won-Sup;Kim, Hee-Ju;Jun, Myung-Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.365-375
    • /
    • 2010
  • Concrete-filled steel tube columns are expected to have confined effects of the steel on the concrete and reinforced local buckling effects of the concrete. After comparing the results of existing studies with the experimental results from this study, the stress-strain relations were modified by evaluating the load-displacement with consideration of the confined effects. The effects of the parameters on the load-displacement and moment-curvature relationship according to the sectional and material properties were analyzed.