• Title/Summary/Keyword: local model network

Search Result 571, Processing Time 0.027 seconds

A study on the local number system model for the communications unifications of North and South Korea (남북한 통신통합에 따른 상호 지역번호체계 모형에 관한 연구)

  • 황민호;서석철;이재완;고남영
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.2
    • /
    • pp.233-237
    • /
    • 2001
  • The existent number system, which is divided into two, will give much obstacle to achieve Information and Communication exchange between south and north korea. Therefore as a long point of view, As the number system between two koreas have to meet the communication demand and the service development. It is very important to set up the most effective and suitable structure and system in given communication environment. To prepare the future its growth as the advent of new network and communication service, This paper presents the scheme of a number system unification which is essential in the unification of Information and Communication between two countries after Korea-unification.

  • PDF

A Modeling and Optimal Site of SMES for Power System Stabilization (계통안정화를 위한 SMES의 모델링과 적정위치 선정)

  • Kim, Jeong-Hun;Im, Jae-Yun;Lee, Jong-Pil
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.494-501
    • /
    • 1999
  • In this research, ANN modeling method of SMES unit is developed for stability analysis, and the optimal site is selected to maximize stabilization effect of SMES unit. The ANN is trained by learning data which is obtained through the application of complex test function into the traditional mathematical mode. In order to verify the validity of proposed modeling method, fault data of sample power system is applied to both the traditional and the ANN models. When the response of traditional and proposed models are compared, the average error for the active and reactive power are 2.51[%], and 0.24[%], respectively. From the comparison, the relevance of proposed method is validated. For the transient stability analysis, an application method of the proposed model is presented, and the transient stability performance index, which describes system stabilization effect of SMES at disturbance, is also suggested, and optimal site selection method of SMES is presented. In the viewpoint of the voltage stability, system stabilization criterion of local bus is presented from P­V curve, and then optimal site which can maximize the voltage stabilization of the whole power system, is decided from the proposed voltage stability performance index.

  • PDF

Genetically Opimized Self-Organizing Fuzzy Polynomial Neural Networks Based on Fuzzy Polynomial Neurons (퍼지다항식 뉴론 기반의 유전론적 최적 자기구성 퍼지 다항식 뉴럴네트워크)

  • 박호성;이동윤;오성권
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.551-560
    • /
    • 2004
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, and a collection of the specific subset of input variables) and addresses specific aspects of parametric optimization. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series), A comparative analysis reveals that the proposed SOFPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literatures.

Current Status and Prospect of Environmental friendly Farmstead Milk Processing in Korea (한국의 친환경적 목장형 유가공의 현황과 발전과제)

  • Bae, In-Hyu
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.2
    • /
    • pp.155-176
    • /
    • 2010
  • This study was conducted to research the status, history and prospects of farm scale milk processing and to develop a management strategy for small scale milk process plant in Korea. Also it aims to provide ways to apply it so as to vitalize the farm made milk products market practically. This study was also treats the practical development of dairy farm school programs through the farm scale milk processing. Farm-scale milk plant (FMP) should be some of the ideas to develop small scale and using the resources according to the local features, limited expanding in regional market, produce by consumers order amounts, management policy will be transferred organic dairy farm. A few policy suggestions to put FMP system of financial support would not from beginner, it is better to settled FMP system by government or co-operation group in practical support programs were proposed. What the state needs to do through direct involvement were to put efforts at demand expansion on FMP system products, to certificate and safety the farm made milk products marketing system settings, to build more variation chance of the milk products. What was more important, however, was support policy, to create the network of FMP market and to develop of training program contents for each FMP operation unit. The ideal FMP model for the development of Dairy Farming proposed in this research will be applied as a relevant reference in managing and realizing environmental friendly and sustainable dairy industry at the national level.

Pre-diagnosis Management in WSN based Portable Healthcare Monitoring System (무선센서네트워크 기반 휴대용 헬스케어 모니터링 시스템을 위한 휴대폰 자체 간이진단 관리)

  • Hii, Pei-Cheng;Lee, Seung-Chul;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.538-541
    • /
    • 2009
  • Increasing of number of people who suffered from long term chronic diseases which required frequent daily health monitoring and body check up in conjunction with the trendy uses of mobile phones and Personal Digital Assistants (PDAs) in various ubiquitous computing had make portable healthcare system a well known application today. A mobile phone based portable healthcare monitoring system with multiple vital signals monitoring ability at real time in WSN and CDMA network is developed. This system carries out real time monitoring and local data analysis process in the mobile phone. Any detection of abnormal health condition and diagnosis at earlier stage will reduce the risk of patient's life. As an extension to the existing model, a pre-diagnosis management system (PDMS) is designed to minimize the time consuming in pre-diagnosis process in the hospital or healthcare center. An alert is sent to the web server at the healthcare center when the patient detects his health is at critical state where the immediate diagnosis is needed. Preparation of diagnosis equipments and arrangement of doctor and nurses at the hospital side can be done earlier before the arrival of patient at the hospital with the help of PDMS. An efficient pre-diagnosis management increases the chances of diseases recovery rate as well.

  • PDF

Evaluation of Freeway Congestion Management Using Mesoscopic Traffic Simulator (Mesoscopic Traffic Simulator를 이용한 고속도로 지정체 관리방안평가)

  • 최기주;이승환
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.3
    • /
    • pp.47-58
    • /
    • 2001
  • Evaluation of Freeway Congestion Management Using Mesoscopic Traffic Simulator A mesoscopic simulation study to measure the effects of trip generation caused by rampant expansion of residential area around the Kyungbu corridor has been conducted. Some alternatives, which seem to be judgememtally plausible and technically feasible to mitigate such congestion, have been carefully examined and evaluated by the simulation model called INTEGRATION. Alternatives are mostly network improvements. Banpo IC dedicated ramp construction (A1), Seocho IC TSM based weaving elimination (A2), dedicated local and express separation over Seocho-Yangjae segment (A3), Heonleung IC (A4) and Daewang If installations (A5), Pangyo IC improvement (A6), Baikhyun IC (A7) and Dongbaek IC installations (A8) along with Shingal-Pangyo segment capacity addition (A9). The most capital intensive ones are A9, A5, and A4 in that order. A1, A6, A7, and A8 are short in distance but they are also capital intensive and need some construction periods. The least capital driven alternatives are h2 and A3, the h2 is easier to do, but A3 needs traffic diversion scheme during construction. The A1, A7, and A8 have been identified cost effective in terms of speed increase and travel time saving. Along with these results, some limitations and future research agenda regarding simulation have also been presented.

  • PDF

Development of User Based Recommender System using Social Network for u-Healthcare (사회 네트워크를 이용한 사용자 기반 유헬스케어 서비스 추천 시스템 개발)

  • Kim, Hyea-Kyeong;Choi, Il-Young;Ha, Ki-Mok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.181-199
    • /
    • 2010
  • As rapid progress of population aging and strong interest in health, the demand for new healthcare service is increasing. Until now healthcare service has provided post treatment by face-to-face manner. But according to related researches, proactive treatment is resulted to be more effective for preventing diseases. Particularly, the existing healthcare services have limitations in preventing and managing metabolic syndrome such a lifestyle disease, because the cause of metabolic syndrome is related to life habit. As the advent of ubiquitous technology, patients with the metabolic syndrome can improve life habit such as poor eating habits and physical inactivity without the constraints of time and space through u-healthcare service. Therefore, lots of researches for u-healthcare service focus on providing the personalized healthcare service for preventing and managing metabolic syndrome. For example, Kim et al.(2010) have proposed a healthcare model for providing the customized calories and rates of nutrition factors by analyzing the user's preference in foods. Lee et al.(2010) have suggested the customized diet recommendation service considering the basic information, vital signs, family history of diseases and food preferences to prevent and manage coronary heart disease. And, Kim and Han(2004) have demonstrated that the web-based nutrition counseling has effects on food intake and lipids of patients with hyperlipidemia. However, the existing researches for u-healthcare service focus on providing the predefined one-way u-healthcare service. Thus, users have a tendency to easily lose interest in improving life habit. To solve such a problem of u-healthcare service, this research suggests a u-healthcare recommender system which is based on collaborative filtering principle and social network. This research follows the principle of collaborative filtering, but preserves local networks (consisting of small group of similar neighbors) for target users to recommend context aware healthcare services. Our research is consisted of the following five steps. In the first step, user profile is created using the usage history data for improvement in life habit. And then, a set of users known as neighbors is formed by the degree of similarity between the users, which is calculated by Pearson correlation coefficient. In the second step, the target user obtains service information from his/her neighbors. In the third step, recommendation list of top-N service is generated for the target user. Making the list, we use the multi-filtering based on user's psychological context information and body mass index (BMI) information for the detailed recommendation. In the fourth step, the personal information, which is the history of the usage service, is updated when the target user uses the recommended service. In the final step, a social network is reformed to continually provide qualified recommendation. For example, the neighbors may be excluded from the social network if the target user doesn't like the recommendation list received from them. That is, this step updates each user's neighbors locally, so maintains the updated local neighbors always to give context aware recommendation in real time. The characteristics of our research as follows. First, we develop the u-healthcare recommender system for improving life habit such as poor eating habits and physical inactivity. Second, the proposed recommender system uses autonomous collaboration, which enables users to prevent dropping and not to lose user's interest in improving life habit. Third, the reformation of the social network is automated to maintain the quality of recommendation. Finally, this research has implemented a mobile prototype system using JAVA and Microsoft Access2007 to recommend the prescribed foods and exercises for chronic disease prevention, which are provided by A university medical center. This research intends to prevent diseases such as chronic illnesses and to improve user's lifestyle through providing context aware and personalized food and exercise services with the help of similar users'experience and knowledge. We expect that the user of this system can improve their life habit with the help of handheld mobile smart phone, because it uses autonomous collaboration to arouse interest in healthcare.

Short-term Prediction of Travel Speed in Urban Areas Using an Ensemble Empirical Mode Decomposition (앙상블 경험적 모드 분해법을 이용한 도시부 단기 통행속도 예측)

  • Kim, Eui-Jin;Kim, Dong-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.579-586
    • /
    • 2018
  • Short-term prediction of travel speed has been widely studied using data-driven non-parametric techniques. There is, however, a lack of research on the prediction aimed at urban areas due to their complex dynamics stemming from traffic signals and intersections. The purpose of this study is to develop a hybrid approach combining ensemble empirical mode decomposition (EEMD) and artificial neural network (ANN) for predicting urban travel speed. The EEMD decomposes the time-series data of travel speed into intrinsic mode functions (IMFs) and residue. The decomposed IMFs represent local characteristics of time-scale components and they are predicted using an ANN, respectively. The IMFs can be predicted more accurately than their original travel speed since they mitigate the complexity of the original data such as non-linearity, non-stationarity, and oscillation. The predicted IMFs are summed up to represent the predicted travel speed. To evaluate the proposed method, the travel speed data from the dedicated short range communication (DSRC) in Daegu City are used. Performance evaluations are conducted targeting on the links that are particularly hard to predict. The results show the developed model has the mean absolute error rate of 10.41% in the normal condition and 25.35% in the break down for the 15-min-ahead prediction, respectively, and it outperforms the simple ANN model. The developed model contributes to the provision of the reliable traffic information in urban transportation management systems.

Comparative Analysis of Self-supervised Deephashing Models for Efficient Image Retrieval System (효율적인 이미지 검색 시스템을 위한 자기 감독 딥해싱 모델의 비교 분석)

  • Kim Soo In;Jeon Young Jin;Lee Sang Bum;Kim Won Gyum
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.519-524
    • /
    • 2023
  • In hashing-based image retrieval, the hash code of a manipulated image is different from the original image, making it difficult to search for the same image. This paper proposes and evaluates a self-supervised deephashing model that generates perceptual hash codes from feature information such as texture, shape, and color of images. The comparison models are autoencoder-based variational inference models, but the encoder is designed with a fully connected layer, convolutional neural network, and transformer modules. The proposed model is a variational inference model that includes a SimAM module of extracting geometric patterns and positional relationships within images. The SimAM module can learn latent vectors highlighting objects or local regions through an energy function using the activation values of neurons and surrounding neurons. The proposed method is a representation learning model that can generate low-dimensional latent vectors from high-dimensional input images, and the latent vectors are binarized into distinguishable hash code. From the experimental results on public datasets such as CIFAR-10, ImageNet, and NUS-WIDE, the proposed model is superior to the comparative model and analyzed to have equivalent performance to the supervised learning-based deephashing model. The proposed model can be used in application systems that require low-dimensional representation of images, such as image search or copyright image determination.

Control of pH Neutralization Process using Simulation Based Dynamic Programming in Simulation and Experiment (ICCAS 2004)

  • Kim, Dong-Kyu;Lee, Kwang-Soon;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.620-626
    • /
    • 2004
  • For general nonlinear processes, it is difficult to control with a linear model-based control method and nonlinear controls are considered. Among the numerous approaches suggested, the most rigorous approach is to use dynamic optimization. Many general engineering problems like control, scheduling, planning etc. are expressed by functional optimization problem and most of them can be changed into dynamic programming (DP) problems. However the DP problems are used in just few cases because as the size of the problem grows, the dynamic programming approach is suffered from the burden of calculation which is called as 'curse of dimensionality'. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach is proposed by Bertsekas and Tsitsiklis (1996). To get the solution of seriously nonlinear process control, the interest in NDP approach is enlarged and NDP algorithm is applied to diverse areas such as retailing, finance, inventory management, communication networks, etc. and it has been extended to chemical engineering parts. In the NDP approach, we select the optimal control input policy to minimize the value of cost which is calculated by the sum of current stage cost and future stages cost starting from the next state. The cost value is related with a weight square sum of error and input movement. During the calculation of optimal input policy, if the approximate cost function by using simulation data is utilized with Bellman iteration, the burden of calculation can be relieved and the curse of dimensionality problem of DP can be overcome. It is very important issue how to construct the cost-to-go function which has a good approximate performance. The neural network is one of the eager learning methods and it works as a global approximator to cost-to-go function. In this algorithm, the training of neural network is important and difficult part, and it gives significant effect on the performance of control. To avoid the difficulty in neural network training, the lazy learning method like k-nearest neighbor method can be exploited. The training is unnecessary for this method but requires more computation time and greater data storage. The pH neutralization process has long been taken as a representative benchmark problem of nonlin ar chemical process control due to its nonlinearity and time-varying nature. In this study, the NDP algorithm was applied to pH neutralization process. At first, the pH neutralization process control to use NDP algorithm was performed through simulations with various approximators. The global and local approximators are used for NDP calculation. After that, the verification of NDP in real system was made by pH neutralization experiment. The control results by NDP algorithm was compared with those by the PI controller which is traditionally used, in both simulations and experiments. From the comparison of results, the control by NDP algorithm showed faster and better control performance than PI controller. In addition to that, the control by NDP algorithm showed the good results when it applied to the cases with disturbances and multiple set point changes.

  • PDF