본 연구는 2010년부터 2020년까지 우리나라 지역노동시장권을 대상으로 업무 특성에 따른 직종 집단간 고용구조의 변화를 살펴보고, 임금 프리미엄에 미치는 영향요인을 분석하는 데에 목적이 있다. 본 연구의 분석은 크게 세 단계로 이루어진다. 첫째, 한국직업정보시스템의 『재직자조사』 원자료의 직종별 업무 특성 자료에 대해 탐색적 요인분석을 수행한 다음, 비단순반복 업무지수를 산출하여 일자리를 유형화한다. 둘째, 『인구총조사』원시 자료와『한국노동패널조사』자료를 결합해 개인 수준 및 지역 수준 자료를 구축한 다음, 2010년부터 2020년까지 직종별 고용 분포 변화를 분석한다. 셋째, 위계적 선형모형을 활용해 직종 집단별 임금 프리미엄에 영향을 미치는 개인 및 지역 수준 요인을 실증 분석한다. 분석 결과에 따르면, 2010년 이후 비단순반복 업무지수가 높은 직종의 고용비중은 계속해서 증가했으며, 대도시 지역노동시장에서 지배적인 고용구조를 가지고 있는 것으로 나타났다. 또한 도시화경제로 인한 집적경제 외부효과는 비단순반복 업무를 주로 요구하는 직업에 종사하는 임금근로자에게 유의한 임금 프리미엄을 제공하는 것으로 나타났다. 본 연구는 지역노동시장 맥락에 따른 일자리 구조의 전환과 임금불평등의 양상을 실증 분석함으로써 지역노동시장의 불평등과 양극화 완화를 위한 정책 대안 마련에 시사점을 제공하고자 했다.
Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) offers opportunities to make advances in many research areas including hydrology by providing near-global scale elevation measurements at a uniform resolution. Its wide coverage and complimentary online access especially benefits researchers requiring topographic information of hard-to-access areas. However, SRTM DEM also contains inherent errors, which are subject to propagation with its manipulation into analysis outputs. Sensitivity of hydrologic analysis to the errors has not been fully understood yet. This study investigated their impact on estimation of hydrologic derivatives such as slope, stream network, and watershed boundary using Monte Carlo simulation and spatial moving average techniques. Different amount of the errors and their spatial auto-correlation structure were considered in the study. Two sub-watersheds of Geum and Deadong River areas located in South and North Korea, respectively, were selected as the study areas. The results demonstrated that the spatial presentations of stream networks and watershed boundaries and their length and area estimations could be greatly affected by the SRTM DEM errors, in particular relatively flat areas. In the Deadong River area, artifacts of the SRTM DEM created sinks even after the filling process and then closed drainage basin and short stream lines, which are not the case in the reality. These findings provided an evidence that SRTM DEM alone may not enough to accurately figure out the hydrologic feature of a watershed, suggesting need of local knowledge and complementary data.
In this paper, we introduce a new architecture of PSO-based Polynomial Neural Networks (PNN) and discuss its comprehensive design methodology. The conventional PNN is based on a extended Group Method of Data Handling (GMDH) method, and utilized the polynomial order (viz. linear, quadratic, and modified quadratic) as well as the number of node inputs fixed (selected in advance by designer) at Polynomial Neurons located in each layer through a growth process of the network. Moreover it does not guarantee that the conventional PNN generated through learning results in the optimal network architecture. The PSO-based PNN results in a structurally optimized structure and comes with a higher level of flexibility that the one encountered in the conventional PNN. The PSO-based design procedure being applied at each layer of PNN leads to the selection of preferred PNs with specific local characteristics (such as the number of input variables, input variables, and the order of the polynomial) available within the PNN. In the sequel, two general optimization mechanisms of the PSO-based PNN are explored: the structural optimization is realized via PSO whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the PSO-based PNN, the model is experimented with using Gas furnace process data, and pH neutralization process data. For the characteristic analysis of the given entire data with non-linearity and the construction of efficient model, the given entire system data is partitioned into two type such as Division I(Training dataset and Testing dataset) and Division II(Training dataset, Validation dataset, and Testing dataset). A comparative analysis shows that the proposed PSO-based PNN is model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.
정보통신기술이 발전함에 따라 내부자의 불법적인 시스템 사용이나 외부 침입자에 의한 중요 정보의 유출 및 조작을 알아내는 침입탐지시스템에 대한 연구가 활발히 이루어지고 있다. 이제까지는 네트워크 패킷, 시스템 호출 감사자료 등의 척도에 은닉 마르코프 모델, 인공 신경망, 통계적 방법 등의 모델링 방법을 적용하는 연구가 이루어졌다. 그러나 사용하는 척도와 모델링 방법에 따라 취약점이 있어 탐지하지 못하는 침입이 많은데 이는 침입의 형태에 따라 흔적을 남기는 척도가 다르기 때문이다. 본 논문에서는 이러한 단일척도 침입탐지시스템의 단점을 보완하기 위해 시스템 호출, 프로세스의 자원점유율, 파일 접근이벤트 등의 세 가지 척도에 대하여 은닉 마르코프 모델, 통계적 방법, 규칙기반 방법을 사용하여 모델링한 후, 그 결과를 규칙기반 방법으로 결합하는 침입탐지 방법을 제안한다. 실험결과 다양한 침입 패턴에 대하여 다중척도 결합방법이 매우 낮은 false-positive 오류율을 보여 그 가능성을 확인할 수 있었다.
본 논문에서는 콘포머 기반 한국어 음성인식 시스템을 제안한다. 콘포머는 트랜스포머 모델에 콘볼루션신경망(Convolution Neural Network, CNN) 기능을 보강한 구조이며 광역 정보를 잘 표현할 수 있는 트랜스포머와 지역 정보를 잘 표현할 수 있는 CNN을 결합한 신경망이다. 음성인식 기본 시스템으로 트랜스포모에 기반한 음성인식시스템을 개발하였으며 언어모델로는 Long Short-Term Memory(LSTM)을 사용하였다. 콘포머 기반 음성인식시스템은 트랜스포머 대신에 콘포머를 사용하였고 언어모델로는 트랜스포머를 이용하였다. 성능 평가를 위해 AI-hub에 있는 Electronics and Telecommunications Research Institute(ETRI) 음성코퍼스를 활용하였으며 트랜스포머 기반 음성인식 시스템은 오인식률이 11.8 %이 되었으며 콘포머 기반 음성인식시스템은 오인식률이 5.7 %가 되었다. AI-hub에 있는 다른 영역의 NHN다이퀘스트 음성 코퍼스를 추가해도 유사한 성능이 유지가 되어 제안된 콘포머 음성인식시스템의 유효성을 입증하였다.
3D 물체검출은 대체로 자동차, 버스, 사람, 가구 등과 같은 비교적 크기가 큰 데이터를 검출하는 것을 목표로 두어 작은 객체 검출에는 취약하다. 또한, 임베디드 기기와 같은 자원이 제한적인 환경에서는 방대한 연산량 때문에 모델의 적용이 어렵다. 본 논문에서는 1개의 레이어만을 사용하여 로컬 특징에 중점을 두어 작은 객체 검출의 정확도를 높였으며, 제안한 사전 학습된 큰 네트워크에서 작은 네트워크로의 지식 증류법과 파라미터 크기에 따른 적응적 양자화를 통해 추론 속도를 향상시켰다. 제안 모델은 SUN RGB-D Val 와 자체 제작한 모형 사과나무 데이터 셋을 이용하여 성능을 평가하였고 최종적으로 mAP@0.25에서 62.04%, mAP@0.5에서 47.1%의 정확도 성능을 보였으며, 추론 속도는 120.5 scenes per sec로 빠른 실시간 처리속도를 보였다.
본 논문에서는 미지의 비선형 계통에 대한 동적 퍼지모델 기반 고장 검출 및 진단(FDI) 계통 설계 기법을 제시한다. 비선형 계통에 대한 일반적인 모델 기반 FDI 계통에서는 선형화된 모델을 이용하고 있다 이러한 방법은 계통에 대한 정확한 수학적 모델을 요구하게 되어 복잡한 비선형 계통에의 적용시 많은 어려움이 있다 제안되는 FDI계통에서는 미지의 비선형 계통을 다수의 선형 모델을 갖는 동적 퍼지모델 형태로 식별한다. 잔차벡터는 온라인 알고리즘에 의해 추정되는 파라미터의 변동치와 비선형 계통의 동작 영역을 나타내는 퍼지 규칙들의 소속값들로 구성된다. 계통의 고장 검출 및 진단은 잔차벡터와 고장종류간의 관계를 학습한 신경망 분류기에 의해 수행된다. 제안된 FDI 계통 설계법을 이용하여 2 탱크 계통에 대한 FDI 계통을 설계하고 시뮬레이션 연구를 통하여 그 유용성을 보였다.
This paper introduces a new architecture of genetically optimized self-organizing fuzzy polynomial neural networks by means of information granulation. The conventional SOFPNNs developed so far are based on mechanisms of self-organization and evolutionary optimization. The augmented genetically optimized SOFPNN using Information Granulation (namely IG_gSOFPNN) results in a structurally and parametrically optimized model and comes with a higher level of flexibility in comparison to the one we encounter in the conventional FPNN. With the aid of the information granulation, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. The GA-based design procedure being applied at each layer of genetically optimized self-organizing fuzzy polynomial neural networks leads to the selection of preferred nodes with specific local characteristics (such as the number of input variables, the order of the polynomial, a collection of the specific subset of input variables, and the number of membership function) available within the network. To evaluate the performance of the IG_gSOFPNN, the model is experimented with using gas furnace process data. A comparative analysis shows that the proposed IG_gSOFPNN is model with higher accuracy as well as more superb predictive capability than intelligent models presented previously.
A spatial interpolation scheme incorporating local geographic potential for cold air accumulation (TOPSIM) was used to test the feasibility of operational frost warning in Chatancheon basin in Yeoncheon County, where the introduction of new crops including temperate zone fruits is planned. Air temperature from April to June 2003 was measured at one-minute intervals at four locations within the basin. Cold-air accumulation potentials (CAP) at 4 sites were calculated for 3 different catchment scales: a rectangular area of 65 x 55 km which covers the whole county, the KOWACO (Korea Water Corporation) hydrologic unit which includes all 4 sites, and the sub-basins delineated by a stream network analysis of the digital elevation model. Daily minimum temperatures at 4 sites were calculated by interpolating the perfect prognosis (i.e., synoptic observations at KMA Dongducheon station) based on TOPSIM with 3 different CAPs. Mean error, mean absolute error, and root mean square error were calculated for 45 days with no precipitation to test the model performance. For the 3 flat locations, little difference was detected in model performance among 3 catchment areas, but the best performance was found with the CAPs calculated for sub-basins at one site (Oksan) on complex terrain. When TOPSIM loaded with sub-basin CAPs was applied to Oksan to predict frost events during the fruit flowering period in 2004, the goodness of fit was sufficient for making an operational frost warning system for mountainous areas.
V. Michael Holers;Francisco G. La Rosa;Nirmal K. Banda
IMMUNE NETWORK
/
제21권6호
/
pp.45.1-45.13
/
2021
Many mouse models of rheumatoid arthritis have been identified, but only a limited number are present for axial spondyloarthritis (AxSpA). Collagen Ab-induced arthritis (CAIA) is one of the most widely used mouse models of arthritis, and it is complement-dependent. We found that mice developing CAIA also developed spinal lesions similar to those found in AxSpA. To induce CAIA, mice were injected intraperitoneally at day 0 with anti-collagen Abs, followed by LPS injection at day 3. CAIA mice demonstrated a significant kyphosis through the spine, as well as hypertrophic cartilage and osseous damage of the intravertebral joints. Immunohistochemical staining of the kyphotic area revealed increased complement C3 deposition and macrophage infiltration, with localization to the intravertebral joint margins. Near Infrared (NIR) in vivo imaging showed that anti-collagen Abs conjugated with IRDye® 800CW not only localized to cartilage surface in the joints but also to the spine in arthritic mice. We report here a novel preclinical mouse model in which, associated with the induction of CAIA, mice also exhibited salient features of AxSpA; this new experimental model of AxSpA may allow investigators to shed light on the local causal mechanisms of AxSpA bone and soft tissue changes as well as treatment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.