• Title/Summary/Keyword: local k-Ramsey number

Search Result 1, Processing Time 0.015 seconds

LOCAL AND MEAN k-RAMSEY NUMBERS FOR THE FAMILY OF GRAPHS

  • Su, Zhanjun;Chen, Hongjing;Ding, Ren
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.909-913
    • /
    • 2009
  • For a family of graphs $\mathcal{H}$ and an integer k, we denote by $R^k(\mathcal{H})$ the corresponding k-Ramsey number, which is defined to be the smallest integer n such that every k-coloring of the edges of $K_n$ contains a monochromatic copy of a graph in $\mathcal{H}$. The local k-Ramsey number $R^k_{loc}(\mathcal{H})$ and the mean k-Ramsey number $R^k_{mean}(\mathcal{H})$ are defined analogously. Let $\mathcal{G}$ be the family of non-bipartite graphs and $T_n$ be the family of all trees on n vertices. In this paper we prove that $R^k_{loc}(\mathcal{G})=R^k_{mean}(\mathcal{G})$, and $R^2(T_n)$ < $R^2_{loc}(T_n)4 = $R^2_{mean}(T_n)$ for all $n\;{\ge}\;3$.

  • PDF