• Title/Summary/Keyword: local histogram of intensity

Search Result 21, Processing Time 0.023 seconds

An Improvement of Recognition Performance Based on Nonlinear Equalization and Statistical Correlation (비선형 평활화와 통계적 상관성에 기반을 둔 인식성능 개선)

  • Shin, Hyun-Soo;Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.555-562
    • /
    • 2012
  • This paper presents a hybrid method for improving the recognition performance, which is based on the nonlinear histogram equalization, features extraction, and statistical correlation of images. The nonlinear histogram equalization based on a logistic function is applied to adaptively improve the quality by adjusting the brightness of the image according to its intensity level frequency. The statistical correlation that is measured by the normalized cross-correlation(NCC) coefficient, is applied to rapidly and accurately express the similarity between the images. The local features based on independent component analysis(ICA) that is used to calculate the NCC, is also applied to statistically measure the correct similarity in each images. The proposed method has been applied to the problem for recognizing the 30-face images of 40*50 pixels. The experimental results show that the proposed method has a superior recognition performances to the method without performing the preprocessing, or the methods of conventional and adaptively modified histogram equalization, respectively.

Fast Object Classification Using Texture and Color Information for Video Surveillance Applications (비디오 감시 응용을 위한 텍스쳐와 컬러 정보를 이용한 고속 물체 인식)

  • Islam, Mohammad Khairul;Jahan, Farah;Min, Jae-Hong;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.1
    • /
    • pp.140-146
    • /
    • 2011
  • In this paper, we propose a fast object classification method based on texture and color information for video surveillance. We take the advantage of local patches by extracting SURF and color histogram from images. SURF gives intensity content information and color information strengthens distinctiveness by providing links to patch content. We achieve the advantages of fast computation of SURF as well as color cues of objects. We use Bag of Word models to generate global descriptors of a region of interest (ROI) or an image using the local features, and Na$\ddot{i}$ve Bayes model for classifying the global descriptor. In this paper, we also investigate discriminative descriptor named Scale Invariant Feature Transform (SIFT). Our experiment result for 4 classes of the objects shows 95.75% of classification rate.

On-Road Succeeding Vehicle Detection using Characteristic Visual Features (시각적 특징들을 이용한 도로 상의 후방 추종 차량 인식)

  • Adhikari, Shyam Prasad;Cho, Hi-Tek;Yoo, Hyeon-Joong;Yang, Chang-Ju;Kim, Hyong-Suk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.636-644
    • /
    • 2010
  • A method for the detection of on-road succeeding vehicles using visual characteristic features like horizontal edges, shadow, symmetry and intensity is proposed. The proposed method uses the prominent horizontal edges along with the shadow under the vehicle to generate an initial estimate of the vehicle-road surface contact. Fast symmetry detection, utilizing the edge pixels, is then performed to detect the presence of vertically symmetric object, possibly vehicle, in the region above the initially estimated vehicle-road surface contact. A window defined by the horizontal and the vertical line obtained from above along with local perspective information provides a narrow region for the final search of the vehicle. A bounding box around the vehicle is extracted from the horizontal edges, symmetry histogram and a proposed squared difference of intensity measure. Experiments have been performed on natural traffic scenes obtained from a camera mounted on the side view mirror of a host vehicle demonstrate good and reliable performance of the proposed method.

Regional Linear Warping for Image Stitching with Dominant Edge Extraction

  • Yoo, Jisung;Hwang, Sung Soo;Kim, Seong Dae;Ki, Myung Seok;Cha, Jihun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2464-2478
    • /
    • 2013
  • Image stitching techniques produce an image with a wide field-of-view by aligning multiple images with a narrow field-of-view. While conventional algorithms successfully stitch images with a small parallax, structure misalignment may occur when input images contain a large parallax. This paper presents an image stitching algorithm that aligns images with a large parallax by regional linear warping. To this end, input images are first approximated as multiple planar surfaces, and different linear warping is applied to each planar surface. For approximating input images as multiple planar surfaces, the concept of dominant edges is introduced. Dominant edges are defined as conspicuous edges of lines in input images, and extracted dominant edges identify the boundaries of each planar surface. Dominant edge extraction is conducted by detecting distinct changes of local characteristics around strong edge pixels. Experimental results show that the proposed algorithm successfully stitches images with a large parallax without structure misalignment.

Digital Video Steganalysis Based on a Spatial Temporal Detector

  • Su, Yuting;Yu, Fan;Zhang, Chengqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.360-373
    • /
    • 2017
  • This paper presents a novel digital video steganalysis scheme against the spatial domain video steganography technology based on a spatial temporal detector (ST_D) that considers both spatial and temporal redundancies of the video sequences simultaneously. Three descriptors are constructed on XY, XT and YT planes respectively to depict the spatial and temporal relationship between the current pixel and its adjacent pixels. Considering the impact of local motion intensity and texture complexity on the histogram distribution of three descriptors, each frame is segmented into non-overlapped blocks that are $8{\times}8$ in size for motion and texture analysis. Subsequently, texture and motion factors are introduced to provide reasonable weights for histograms of the three descriptors of each block. After further weighted modulation, the statistics of the histograms of the three descriptors are concatenated into a single value to build the global description of ST_D. The experimental results demonstrate the great advantage of our features relative to those of the rich model (RM), the subtractive pixel adjacency model (SPAM) and subtractive prediction error adjacency matrix (SPEAM), especially for compressed videos, which constitute most Internet videos.

Dose Planning of Forward Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer using Compensating Filters (보상여과판을 이용한 비인강암의 전방위 강도변조 방사선치료계획)

  • Chu Sung Sil;Lee Sang-wook;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • Purpose : To improve the local control of patients with nasopharyngeal cancer, we have implemented 3-D conformal radiotherapy and forward intensity modulated radiation therapy (IMRT) to used of compensating filters. Three dimension conformal radiotherapy with intensity modulation is a new modality for cancer treatments. We designed 3-D treatment planning with 3-D RTP (radiation treatment planning system) and evaluation dose distribution with tumor control probability (TCP) and normal tissue complication probability (NTCP). Material and Methods : We have developed a treatment plan consisting four intensity modulated photon fields that are delivered through the compensating tilters and block transmission for critical organs. We get a full size CT imaging including head and neck as 3 mm slices, and delineating PTV (planning target volume) and surrounding critical organs, and reconstructed 3D imaging on the computer windows. In the planning stage, the planner specifies the number of beams and their directions including non-coplanar, and the prescribed doses for the target volume and the permissible dose of normal organs and the overlap regions. We designed compensating filter according to tissue deficit and PTV volume shape also dose weighting for each field to obtain adequate dose distribution, and shielding blocks weighting for transmission. Therapeutic gains were evaluated by numerical equation of tumor control probability and normal tissue complication probability. The TCP and NTCP by DVH (dose volume histogram) were compared with the 3-D conformal radiotherapy and forward intensity modulated conformal radiotherapy by compensator and blocks weighting. Optimization for the weight distribution was peformed iteration with initial guess weight or the even weight distribution. The TCP and NTCP by DVH were compared with the 3-D conformal radiotherapy and intensitiy modulated conformal radiotherapy by compensator and blocks weighting. Results : Using a four field IMRT plan, we have customized dose distribution to conform and deliver sufficient dose to the PTV. In addition, in the overlap regions between the PTV and the normal organs (spinal cord, salivary grand, pituitary, optic nerves), the dose is kept within the tolerance of the respective organs. We evaluated to obtain sufficient TCP value and acceptable NTCP using compensating filters. Quality assurance checks show acceptable agreement between the planned and the implemented MLC(multi-leaf collimator). Conclusion : IMRT provides a powerful and efficient solution for complex planning problems where the surrounding normal tissues place severe constraints on the prescription dose. The intensity modulated fields can be efficaciously and accurately delivered using compensating filters.

  • PDF

Image Retrieval Using Combination of Color and Multiresolution Texture Features (칼라 및 다해상도 질감 특징 결합에 의한 영상검색)

  • Chun Young-deok;Sung Joong-ki;Kim Nam-chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.930-938
    • /
    • 2005
  • We propose a content-based image retrieval(CBIR) method based on an efncient combination of a color feature and multiresolution texture features. As a color feature, a HSV autocorrelograrn is chosen which is blown to measure spatial correlation of colors well. As texture features, BDIP and BVLC moments are chosen which is hewn to measure local intensity variations well and measure local texture smoothness well, respectively. The texture features are obtained in a wavelet pyramid of the luminance component of a color image. The extracted features are combined for efficient similarity computation by the normalization depending on their dimensions and standard deviation vectors. Experimental results show that the proposed method yielded average $8\%\;and\;11\%$ better performance in precision vs. recall than the method using BDIPBVLC moments and the method using color autocorrelograrn, respectively and yielded at least $10\%$ better performance than the methods using wavelet moments, CSD, color histogram. Specially, the proposed method shows an excellent performance over the other methods in image DBs contained images of various resolutions.

Method of Human Detection using Edge Symmetry and Feature Vector (에지 대칭과 특징 벡터를 이용한 사람 검출 방법)

  • Byun, Oh-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.57-66
    • /
    • 2011
  • In this paper, it is proposed for algorithm to detect human efficiently using a edge symmetry and gradient directional characteristics in realtime by the feature extraction in a single input image. Proposed algorithm is composed of three stages, preprocessing, region partition of human candidates, verification of candidate regions. Here, preprocessing stage is strong the image regardless of the intensity and brightness of surrounding environment, also detects a contour with characteristics of human as considering the shape features size and the condition of human for characteristic of human. And stage for region partition of human candidates has separated the region with edge symmetry for human and size in the detected contour, also divided 1st candidates region with applying the adaboost algorithm. Finally, the candidate region verification stage makes excellent the performance for the false detection by verifying the candidate region using feature vector of a gradient for divided local area and classifier. The results of the simulations, which is applying the proposed algorithm, the processing speed of the proposed algorithms is improved approximately 1.7 times, also, the FNR(False Negative Rate) is confirmed to be better 3% than the conventional algorithm which is a single structure algorithm.

Color Image Rendering using A Modified Image Formation Model (변형된 영상 생성 모델을 이용한 칼라 영상 보정)

  • Choi, Ho-Hyoung;Yun, Byoung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.71-79
    • /
    • 2011
  • The objective of the imaging pipeline is to transform the original scene into a display image that appear similar, Generally, gamma adjustment or histogram-based method is modified to improve the contrast and detail. However, this is insufficient as the intensity and the chromaticity of illumination vary with geometric position. Thus, MSR (Multi-Scale Retinex) has been proposed. the MSR is based on a channel-independent logarithm, and it is dependent on the scale of the Gaussian filter, which varies according to input image. Therefore, after correcting the color, image quality degradations, such as halo, graying-out, and dominated color, may occur. Accordingly, this paper presents a novel color correction method using a modified image formation model in which the image is divided into three components such as global illumination, local illumination, and reflectance. The global illumination is obtained through Gaussian filtering of the original image, and the local illumination is estimated by using JND-based adaptive filter. Thereafter, the reflectance is estimated by dividing the original image by the estimated global and the local illumination to remove the influence of the illumination effects. The output image is obtained based on sRGB color representation. The experiment results show that the proposed method yields better performance of color correction over the conventional methods.

Assessment of the Usefulness of an IMRT Plan Using a Shell-Type Pseudo Target with Patients in Stage III or IV of NSCLC (비소세포폐암 III, IV기 환자에 있어서 Shell-Type Pseudo Target을 이용한 세기 조절 방사선치료계획기법의 유용성 평가)

  • Lee, Sang-Bong;Park, Ki-Ju;Park, Du-Chan;Kim, Man-Wo;Kim, Jun-Gon;Noh, Sung-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.95-106
    • /
    • 2012
  • Purpose: The objective of this study was to investigate the usefulness of an IMRT treatment plan according to whether there was a shell-type pseudo target during radiation therapy for patients in Stage III or IV of non-small cell lung cancer (NSCLC). Materials and Methods: After setting an IMRT (Intensity-Modulated Radiation Therapy, IMRT) plan for when there was a shell-type pseudo target (SPT) and when there was none (WSPT) with 22 patients in Stage III or IV of NSCLC, the investigator analyzed dose-volume histograms (DVHs) and made assessment with dosimetric comparisons such as homogeneity index (HI) inside the tumor target, conformity index (CI) of the tumor target, spinal cord maximum dose, Esophagus $V_{50%}$, mean lung dose (MLD), and $V_{40%}$, $V_{30%}$, $V_{20%}$, $V_{10%}$, $V_{5%}$. Results: The mean CI of WSPT and SPT was $1.22{\pm}0.04$ and $1.16{\pm}0.032$ ($.000^*$), respectively, and the mean HI of WSPT and SPT was $1.06{\pm}0.015$ and $1.07{\pm}0.014$ ($.000^*$), respectively. In SPT, the mean of each CI difference decreased by $-5.16{\pm}2.54%$, while HI increased by average $0.81{\pm}0.47%$. Esophagus $V_{50%}$ recorded $14.54{\pm}12.01%$ (WSPT) and $12.14{\pm}11.09%$ ($.000^*$, SPT) with the mean of SPT differences dropping by $-26.37{\pm}25.05%$. Mean spinal cord maximum dose was $3,898.44{\pm}1,075.0$ cGy (WSPT) and $3,810.8{\pm}1,134.9$ cGy ($.004^*$, SPT) with SPT dropping by average $-3.36{\pm}5.81%$. As for lung $V_{X%}$, the mean of $V_{5%}$ and $V_{10%}$ differences was $-1.62{\pm}2.29%$ ($.006^*$) and $-1.98{\pm}5.02%$ ($.005^*$), respectively with SPT making a decrease. The mean of V20%, V30%, and V40% differences was $-3.51{\pm}3.07%$ ($.000^*$), $-4.84{\pm}6.01%$ ($.000^*$), and $-6.16{\pm}8.46%$ ($.001^*$), respectively, with SPT making a decrease with statistical significance. In MLD assessment, SPT also dropped by average $-2.83{\pm}2.41%$ ($.000^*$). Those results show that SPT allows for mean 169 cGy (Max: 547 cGy, Min: 6.4 cGy) prescription dose. Conclusion: An IMRT treatment plan with SPT during radiation therapy for patients in Stage III or IV of NSCLC will help to reduce the risk of lung toxicity and radiation-induced pneumonia by cutting down radiation doses entering the normal lung, reduce the local control failure rate during radiation therapy due to increasing prescription doses to a certain degree, and increase treatment effects.

  • PDF