• 제목/요약/키워드: local histogram of intensity

검색결과 21건 처리시간 0.031초

Shape Preserving Contrast Enhancement

  • Hwang Jae Ho
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.867-871
    • /
    • 2004
  • In this paper, a new analytic approach for shape preserving contrast enhancement is presented. Contrast enhancement is achieved by means of segmental histogram stretching modification which preserves the given image shape, not distorting the original shape. After global stretching, the image is partitioned into several level-sets according to threshold condition. The image information of each level-set is represented as typical value based on grouped differential values. The basic property is modified into common local schemes, thereby introducing the enhanced effect through extreme discrimination between subsets. The scheme is based on stretching the histogram of subsets in which the intensity gray levels between connected pixels are approximately same In spite of histogram widening, stretched by local image information, it neither creates nor destroys the original image, thereby preserving image shape and enhancing the contrast. By designing local histogram stretching operations, we can preserve the original shape of level-sets of the image, and also enhance the global intensity. Thus it can hold the main properties of both global and local image schemes, which leads to versatile applications in the field of digital epigraphy.

  • PDF

국부 영역의 명도와 색상 히스토그램 유사도를 이용한 인체 추적 (Efficient Human body tracking Using Similarity Of Histogram Of Intensity and Hue Local Area)

  • 곽내정;송특섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.149-152
    • /
    • 2016
  • 본 논문에서는 한 대의 고정카메라로 입력되는 영상에서 인체를 추적하는 알고리즘을 제안한다. 제안방법은 입력영상과 배경영상의 회색조 영상과 색상 영상의 차영상을 구한 후 그 결과를 결합하여 배경과 전경을 분리하고 객체를 추출한다. 각 객체영역은 객체별로 식별 번호가 부여되고 추적된다. 객체에 겹침 또는 가림이 발생할 경우 객체의 국부영역의 명도와 색상의 히스토그램을 구하여 객체를 추적한다. 제안방법을 카메라로 입력되는 비디오영상에 적용한 결과 객체의 가림 및 겹침이 발생했을 때도 객체를 잘 추적하였다.

  • PDF

화소간의 명암차를 이용한 LBP 기반 질감분류 (A Texture Classification Based on LBP by Using Intensity Differences between Pixels)

  • 조용현
    • 한국지능시스템학회논문지
    • /
    • 제25권5호
    • /
    • pp.483-488
    • /
    • 2015
  • 본 논문에서는 질감분류를 위해 블록영상 내에서 인접 화소사이의 다차원 명암차이를 이용한 local binary pattern(LBP) 기법을 제안한다. 여기서 블록영상 내 화소 간 명암차는 4방향(세로, 가로, 대각, 역대각) 각각의 인접 화소 간 밝기변화를 고려한 것으로 영상의 질감분류에 이용되는 히스토그램의 레벨수를 감소시켜 계산 부하를 줄이기 위함이다. 또한 블록 내 명암관계를 이진패턴으로 나타낸 것으로 영상의 국부적 속성을 더욱 더 정확하게 반영하여 효과적인 질감분류를 가능하게 함이다. 제안된 기법을 128*128 픽셀의 그레이 영상 USC Texture Mosaic #2을 대상으로 크기와 질감이 다른 24개의 블록영상 각각을 분류하는 실험결과, 기존의 LBP에 비해 빠른 분류속도를 가지며, 임의 크기 블록영상의 분류도 가능함을 확인하였다. 특히 블록영상의 크기가 증가할수록 히스토그램의 레벨 감소폭이 더욱 더 크게 되어 분류속도의 개선정도도 증가함을 알 수 있다.

인터랙티브 TV 컨트롤 시스템을 위한 근적외선 영상에서의 얼굴 검출 (Face Detection for Interactive TV Control System in Near Infra-Red Images)

  • 원철호
    • 센서학회지
    • /
    • 제20권6호
    • /
    • pp.388-392
    • /
    • 2011
  • In this paper, a face detection method for interactive TV control system using a new feature, edge histogram feature, with a support vector machine(SVM) in the near-infrared(NIR) images is proposed. The edge histogram feature is extracted using 16-directional edge intensity and a histogram. Compared to the previous method using local binary pattern(LBP) feature, the proposed method using edge histogram feature has better performance in both smaller feature size and lower equal error rate(EER) for face detection experiments in NIR databases.

Smoke Detection System Research using Fully Connected Method based on Adaboost

  • Lee, Yeunghak;Kim, Taesun;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • 제4권2호
    • /
    • pp.79-82
    • /
    • 2017
  • Smoke and fire have different shapes and colours. This article suggests a fully connected system which is used two features using Adaboost algorithm for constructing a strong classifier as linear combination. We calculate the local histogram feature by gradient and bin, local binary pattern value, and projection vectors for each cell. According to the histogram magnitude, this paper applied adapted weighting value to improve the recognition rate. To preserve the local region and shape feature which has edge intensity, this paper processed the normalization sequence. For the extracted features, this paper Adaboost algorithm which makes strong classification to classify the objects. Our smoke detection system based on the proposed approach leads to higher detection accuracy than other system.

Adaptive local histogram modification method for dynamic range compression of infrared images

  • Joung, Jihye
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.73-80
    • /
    • 2019
  • In this paper, we propose an effective dynamic range compression (DRC) method of infrared images. A histogram of infrared images has narrow dynamic range compared to visible images. Hence, it is important to apply the effective DRC algorithm for high performance of an infrared image analysis. The proposed algorithm for high dynamic range divides an infrared image into the overlapped blocks and calculates Shannon's entropy of overlapped blocks. After that, we classify each block according to the value of entropy and apply adaptive histogram modification method each overlapped block. We make an intensity mapping function through result of the adaptive histogram modification method which is using standard-deviation and maximum value of histogram of classified blocks. Lastly, in order to reduce block artifact, we apply hanning window to the overlapped blocks. In experimental result, the proposed method showed better performance of dynamic range compression compared to previous algorithms.

휴먼 인지를 위한 근적외선 영상에서의 얼굴 검출 (Face Detection in Near Infra-red for Human Recognition)

  • 이경숙;김현덕
    • 디지털콘텐츠학회 논문지
    • /
    • 제13권2호
    • /
    • pp.189-195
    • /
    • 2012
  • 본 논문에서는 휴먼 인지를 위한, 근적외선 얼굴 영상에서의 얼굴 검출 방법이 제안된다. 에지의 강도와 방향에 기반한 에지 히스토그램이 근적외선 영상으로부터 얼굴을 검출하기 위해 사용되었다. 조명변화에 강인하기 때문에, 제안된 에지 히스토그램은 얼굴을 효과적으로 표현하고 구별한다. 얼굴 검출을 위한 분류기로서는 SVM(Support Vector Machine)을 사용하였으며 제안한 방법은 ULBP(Uniform Local Binary Pattern)보다 적은 피쳐 개수를 가지면서도 에러율 측면에서, ULBP의 경우보다 나은 성능을 나타내었다.

악천후로 저하된 영상 화질의 실시간 개선 (Real Time Enhancement of Images Degraded by Bad Weather)

  • 김재민;연승호
    • 한국멀티미디어학회논문지
    • /
    • 제17권2호
    • /
    • pp.143-151
    • /
    • 2014
  • 악천후로 인하여 화질이 저하된 영상은 사물의 경계에 해당하는 에지 부분이 흐려진다. 본 논문에서는 에지를 최대한으로 선명하게 하여 영상의 시인성을 향상 시키는 화질 개선 방법을 제안한다. 우선 영상의 밝기 필드에서 극점들을 찾아 에지 후보 영역으로 선택하고, 선택된 에지의 측면에 있는 화소들의 밝기로 히스토그램을 형성한다. 형성된 히스토그램의 극소점을 기반으로 히스토그램을 다수의 모드로 분해한다. 모드가 구해지면, 영상 필드에서 에지에 의하여 연결된 모드들을 구하고, 연결된 모드들의 연결 고리를 구한다. 최종적으로 가장 긴 연결 고리를 형성하는 모드간의 간격을 최대한으로 벌린다. 이 때 최소 밝기 모드와 최대 밝기 모드는 화소 밝기 범위 이내에 있어야 한다. 이와 같이 모드의 간격을 벌림으로써 에지를 선명하게 하고 영상의 시인성을 향상한다. 본 논문에서 제안한 방법은 적은 연산량으로 기존의 방법만큼 좋은 성능으로 화질을 개선함을 보여준다.

음성인식기 성능 향상을 위한 영상기반 음성구간 검출 및 적응적 문턱값 추정 (Visual Voice Activity Detection and Adaptive Threshold Estimation for Speech Recognition)

  • 송태엽;이경선;김성수;이재원;고한석
    • 한국음향학회지
    • /
    • 제34권4호
    • /
    • pp.321-327
    • /
    • 2015
  • 본 연구에서는 음성인식기 성능향상을 위한 영상기반 음성구간 검출방법을 제안한다. 기존의 광류기반 방법은 조도변화에 대응하지 못하고 연산량이 많아서 이동형 플렛홈에 적용되는 스마트 기기에 적용하는데 어려움이 있고, 카오스 이론 기반 방법은 조도변화에 강인하지만 차량 움직임 및 입술 검출의 부정확성으로 인해 발생하는 오검출이 발생하는 문제점이 있다. 본 연구에서는 기존 영상기반 음성구간 검출 알고리즘의 문제점을 해결하기 위해 지역 분산 히스토그램(Local Variance Histogram, LVH)과 적응적 문턱값 추정 방법을 이용한 음성구간 검출 알고리즘을 제안한다. 제안된 방법은 조도 변화에 따른 픽셀 변화에 강인하고 연산속도가 빠르며 적응적 문턱값을 사용하여 조도변화 및 움직임이 큰 차량 운전자의 발화를 강인하게 검출할 수 있다. 이동중인 차량에서 촬영한 운전자의 동영상을 이용하여 성능을 측정한 결과 제안한 방법이 기존의 방법에 비하여 성능이 우수함을 확인하였다.

흉부 컴퓨터 단층 촬영에서 정규화를 사용한 다양한 히스토그램 평준화 기법을 비교 (Comparison of Based on Histogram Equalization Techniques by Using Normalization in Thoracic Computed Tomography)

  • 이영준;민정환
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권5호
    • /
    • pp.473-480
    • /
    • 2021
  • This study was purpose to method that applies for improving the image quality in CT and X-ray scan, especially in the lung region. Also, we researched the parameters of the image before and after applying for Histogram Equalization (HE) such as mean, median values in the histogram. These techniques are mainly used for all type of medical images such as for Chest X-ray, Low-Dose Computed Tomography (CT). These are also used to intensify tiny anatomies like vessels, lung nodules, airways and pulmonary fissures. The proposed techniques consist of two main steps using the MATLAB software (R2021a). First, the technique should apply for the process of normalization for improving the basic image more correctly. In the next, the technique actively rearranges the intensity of the image contrast. Second, the Contrast Limited Adaptive Histogram Equalization (CLAHE) method was used for enhancing small details, textures and local contrast of the image. As a result, this paper shows the modern and improved techniques of HE and some advantages of the technique on the traditional HE. Therefore, this paper concludes that various techniques related to the HE can be helpful for many processes, especially image pre-processing for Machine Learning (ML), Deep Learning (DL).