• Title/Summary/Keyword: local histogram analysis

Search Result 45, Processing Time 0.019 seconds

A Framework for Object Detection by Haze Removal (안개 제거에 의한 객체 검출 성능 향상 방법)

  • Kim, Sang-Kyoon;Choi, Kyoung-Ho;Park, Soon-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.168-176
    • /
    • 2014
  • Detecting moving objects from a video sequence is a fundamental and critical task in video surveillance, traffic monitoring and analysis, and human detection and tracking. It is very difficult to detect moving objects in a video sequence degraded by the environmental factor such as fog. In particular, the color of an object become similar to the neighbor and it reduces the saturation, thus making it very difficult to distinguish the object from the background. For such a reason, it is shown that the performance and reliability of object detection and tracking are poor in the foggy weather. In this paper, we propose a novel method to improve the performance of object detection, combining a haze removal algorithm and a local histogram-based object tracking method. For the quantitative evaluation of the proposed system, information retrieval measurements, recall and precision, are used to quantify how well the performance is improved before and after the haze removal. As a result, the visibility of the image is enhanced and the performance of objects detection is improved.

The Effect of the Buffer Size in QoS for Multimedia and bursty Traffic: When an Upgrade Becomes a Downgrade

  • Sequeira, Luis;Fernandez-Navajas, Julian;Saldana, Jose
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3159-3176
    • /
    • 2014
  • This work presents an analysis of the buffer features of an access router, especially the size, the impact on delay and the packet loss rate. In particular, we study how these features can affect the Quality of Service (QoS) of multimedia applications when generating traffic bursts in local networks. First, we show how in a typical SME (Small and Medium Enterprise) network in which several multimedia flows (VoIP, videoconferencing and video surveillance) share access, the upgrade of the bandwidth of the internal network may cause the appearance of a significant amount of packet loss caused by buffer overflow. Secondly, the study shows that the bursty nature of the traffic in some applications traffic (video surveillance) may impair their QoS and that of other services (VoIP and videoconferencing), especially when a certain number of bursts overlap. Various tests have been developed with the aim of characterizing the problems that may appear when network capacity is increased in these scenarios. In some cases, especially when applications generating bursty traffic are present, increasing the network speed may lead to a deterioration in the quality. It has been found that the cause of this quality degradation is buffer overflow, which depends on the bandwidth relationship between the access and the internal networks. Besides, it has been necessary to describe the packet loss distribution by means of a histogram since, although most of the communications present good QoS results, a few of them have worse outcomes. Finally, in order to complete the study we present the MOS results for VoIP calculated from the delay and packet loss rate.

Out-Boundary Rectangle Detection in Comic Images Using the Gradient Radon Transform (그래디언트 라돈변환을 이용한 만화영상의 외곽 경계사각형 검출)

  • Kim, Dong-Keun;Yang, Seung-Beom;Hwang, Chi-Jung
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.4
    • /
    • pp.538-545
    • /
    • 2011
  • Today, there is a wide variety of digital contents on the Internet. Especially, comic images are one of popular digital contents. Most of them are scanned from comic books by digital scanners, but they were not normalized in sense of their size, skew and boundary margin. The normalization is very important step in comic image analysis. It can be achieved by finding out-boundary rectangles in comic images. In this paper, we propose a method for detecting the out-boundary rectangle using the gradient Radon transform in comic images. We applied the Radon transform using image gradients to extract line segments which are the out-boundary rectangle sides' candidates in comic images. The final out-boundary rectangle can be detected by local histogram and the candidate line segments. Experimental results show that our proposed method effectively detect the out-boundary rectangle in comic images.

Person Identification based on Clothing Feature (의상 특징 기반의 동일인 식별)

  • Choi, Yoo-Joo;Park, Sun-Mi;Cho, We-Duke;Kim, Ku-Jin
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • With the widespread use of vision-based surveillance systems, the capability for person identification is now an essential component. However, the CCTV cameras used in surveillance systems tend to produce relatively low-resolution images, making it difficult to use face recognition techniques for person identification. Therefore, an algorithm is proposed for person identification in CCTV camera images based on the clothing. Whenever a person is authenticated at the main entrance of a building, the clothing feature of that person is extracted and added to the database. Using a given image, the clothing area is detected using background subtraction and skin color detection techniques. The clothing feature vector is then composed of textural and color features of the clothing region, where the textural feature is extracted based on a local edge histogram, while the color feature is extracted using octree-based quantization of a color map. When given a query image, the person can then be identified by finding the most similar clothing feature from the database, where the Euclidean distance is used as the similarity measure. Experimental results show an 80% success rate for person identification with the proposed algorithm, and only a 43% success rate when using face recognition.

Rough Set Analysis for Stock Market Timing (러프집합분석을 이용한 매매시점 결정)

  • Huh, Jin-Nyung;Kim, Kyoung-Jae;Han, In-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.77-97
    • /
    • 2010
  • Market timing is an investment strategy which is used for obtaining excessive return from financial market. In general, detection of market timing means determining when to buy and sell to get excess return from trading. In many market timing systems, trading rules have been used as an engine to generate signals for trade. On the other hand, some researchers proposed the rough set analysis as a proper tool for market timing because it does not generate a signal for trade when the pattern of the market is uncertain by using the control function. The data for the rough set analysis should be discretized of numeric value because the rough set only accepts categorical data for analysis. Discretization searches for proper "cuts" for numeric data that determine intervals. All values that lie within each interval are transformed into same value. In general, there are four methods for data discretization in rough set analysis including equal frequency scaling, expert's knowledge-based discretization, minimum entropy scaling, and na$\ddot{i}$ve and Boolean reasoning-based discretization. Equal frequency scaling fixes a number of intervals and examines the histogram of each variable, then determines cuts so that approximately the same number of samples fall into each of the intervals. Expert's knowledge-based discretization determines cuts according to knowledge of domain experts through literature review or interview with experts. Minimum entropy scaling implements the algorithm based on recursively partitioning the value set of each variable so that a local measure of entropy is optimized. Na$\ddot{i}$ve and Booleanreasoning-based discretization searches categorical values by using Na$\ddot{i}$ve scaling the data, then finds the optimized dicretization thresholds through Boolean reasoning. Although the rough set analysis is promising for market timing, there is little research on the impact of the various data discretization methods on performance from trading using the rough set analysis. In this study, we compare stock market timing models using rough set analysis with various data discretization methods. The research data used in this study are the KOSPI 200 from May 1996 to October 1998. KOSPI 200 is the underlying index of the KOSPI 200 futures which is the first derivative instrument in the Korean stock market. The KOSPI 200 is a market value weighted index which consists of 200 stocks selected by criteria on liquidity and their status in corresponding industry including manufacturing, construction, communication, electricity and gas, distribution and services, and financing. The total number of samples is 660 trading days. In addition, this study uses popular technical indicators as independent variables. The experimental results show that the most profitable method for the training sample is the na$\ddot{i}$ve and Boolean reasoning but the expert's knowledge-based discretization is the most profitable method for the validation sample. In addition, the expert's knowledge-based discretization produced robust performance for both of training and validation sample. We also compared rough set analysis and decision tree. This study experimented C4.5 for the comparison purpose. The results show that rough set analysis with expert's knowledge-based discretization produced more profitable rules than C4.5.