• Title/Summary/Keyword: local fourier transform

Search Result 71, Processing Time 0.022 seconds

Image Denoising Based on Adaptive Fractional Order Anisotropic Diffusion

  • Yu, Jimin;Tan, Lijian;Zhou, Shangbo;Wang, Liping;Wang, Chaomei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.436-450
    • /
    • 2017
  • Recently, the method based on fractional order partial differential equation has been used in image processing. Usually, the optional order of fractional differentiation is determined by a lot of experiments. In this paper, a denoising model is proposed based on adaptive fractional order anisotropic diffusion. In the proposed model, the complexity of the local image texture is reflected by the local variance, and the order of the fractional differentiation is determined adaptively. In the process of the adaptive fractional order model, the discrete Fourier transform is applied to compute the fractional order difference as well as the dynamic evolution process. Experimental results show that the peak signal-to-noise ratio (PSNR) and structural similarity index measurement (SSIM) of the proposed image denoising algorithm is better than that of other some algorithms. The proposed algorithm not only can keep the detailed image information and edge information, but also obtain a good visual effect.

Elastic Resistance Exercise for the Elderly on the Magnitude of Frequency and Variability of Ground Reaction Force Signals during Walking (고령자 보행 시 탄성저항운동이 지면반력 신호의 주파수 크기와 variability에 미치는 영향)

  • Seo, Se-Mi;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.49-57
    • /
    • 2008
  • The purpose of this study was to determine the effects of 12-week elastic resistance exercise for the elderly on the magnitude of frequency and variability of ground reaction force signals. To this aim, total 12 elderly women aged in their 70 were participated in this study and asked to do a 12-week elastic resistance exercise program. FFT(fast Fourier Transform) was used to analyze the frequency domain analysis of the ground reaction forces's signals and an accumulative PSD (power spectrum density) normalized by support phase of walking was calculated to reconstruct the certain signals. To estimate the gait stability between the before and after exercise, values of variability were determined in a coefficient of variance. The magnitude of frequency and variability analysis for media-lateral signal revealed significantly less after exercise (p<.05). In contrast, variability of this signal's frequency that have used to evaluate the local stability during walking exhibited significantly greater after exercise(p<.05). In summary, magnitude frequency and variability of media-lateral ground reaction force's signal were significantly changed after a 12-week elastic resistance exercise.

Doppler Spectrum Estimation in a Low Elevation Weather Radar (저고도 기상 레이다에서의 도플러 스펙트럼 추정)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1492-1499
    • /
    • 2020
  • A weather radar system generally shows the weather phenomena related with rainfall and wind velocity. These systems are usually very helpful to monitor the relatively high altitude weather situation for the wide and long range area. However, since the weather hazards due to the strong hail and heavy rainfall occurring locally are observed frequently in recent days, it is important to detect these wether phenomena. For this purpose, it is necessary to detect the fast varying low altitude weather conditions. In this environment, the effect of surface clutter is more evident and the antenna dwell time is much shorter. Therefore, the conventional Doppler spectrum estimation method may cause serious problems. In this paper, the AR(autoregressive) Doppler spectrum estimation methods were applied to solve these problems and the results were analyzed. Applied methods show that improved Doppler spectra can be obtained comparing with the conventional FFT(Fast Fourier Transform) method.

Sources separation of passive sonar array signal using recurrent neural network-based deep neural network with 3-D tensor (3-D 텐서와 recurrent neural network기반 심층신경망을 활용한 수동소나 다중 채널 신호분리 기술 개발)

  • Sangheon Lee;Dongku Jung;Jaesok Yu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.357-363
    • /
    • 2023
  • In underwater signal processing, separating individual signals from mixed signals has long been a challenge due to low signal quality. The common method using Short-time Fourier transform for spectrogram analysis has faced criticism for its complex parameter optimization and loss of phase data. We propose a Triple-path Recurrent Neural Network, based on the Dual-path Recurrent Neural Network's success in long time series signal processing, to handle three-dimensional tensors from multi-channel sensor input signals. By dividing input signals into short chunks and creating a 3D tensor, the method accounts for relationships within and between chunks and channels, enabling local and global feature learning. The proposed technique demonstrates improved Root Mean Square Error and Scale Invariant Signal to Noise Ratio compared to the existing method.

Laboratory study on the modulation evolution of nonlinear wave trains

  • Dong, G.H.;Ma, Y.X.;Zhang, W.;Ma, X.Z.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.189-203
    • /
    • 2012
  • New experiments focusing on the evolution characteristics of nonlinear wave trains were conducted in a large wave flume. A series of wave trains with added sidebands, varying initial steepness, perturbed amplitudes and frequencies, were physically generated in a long wave flume. The experimental results show that the increasing wave steepness, increases the speed of sidebands growth. To study the frequency and phase modulation, the Morlet wavelet transform is adopted to extract the instantaneous frequency of wave trains and the phase functions of each wave component. From the instantaneous frequency, there are local frequency downshifts, even an effective frequency downshift was not observed. The frequency modulation increases with an increase in amplitude modulation, and abrupt changes of instantaneous frequencies occur at the peak modulation. The wrapped phase functions show that in the early stage of the modulation, the phase of the upper sideband first diverges from that of the carrier waves. However, at the later stage, the discrepancy phase from the carrier wave transformed to the lower sideband. The phase deviations appear in the front of the envelope's peaks. Furthermore, the evolution of the instantaneous frequency exhibits an approximate recurrence-type for the experiment with large imposed sidebands, even when the corresponding recurrence is not observed in the Fourier spectrum.

Effect of Fiber Volume Fraction on the Stress Intensity Factors for Multi Layered Composites Under Arbitrary Anti-Plane Shear Loading

  • Kim, Sung-Ho;Lee, Kang-Yong;Joo, Sung-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.920-927
    • /
    • 2000
  • A multi-layered orthotropic material with a center crack is subjected to an anti-plane shear loading. The problem is formulated as a mixed boundary value problem by using the Fourier integral transform method. This gives a Fredholm integral equation of the second kind. The integral equation is solved numerically and anti-plane shear stress intensity factors are analyzed in terms of the material orthotropy for each layer, number of layers, crack length to layer thickness and the order of the loading polynomial. Also, the case of monolithic and hybrid composites are investigated in terms of the local fiber volume fraction and the global fiber volume fraction.

  • PDF

Dynamic Characteristics of Rotating Composite Cantilever Beam with a Breathing Crack (Breathing Crack이 있는 회전하는 복합재료 보의 동적 특성에 관한 연구)

  • Kim, Sung-Soo;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.527-533
    • /
    • 2000
  • It is investigated that the characteristics of rotating cantilevered composite beam with a breathing crack. In the present study, the crack is modeled as a breathing crack which opens and closes with the motion of the unidirectional graphite-fiber reinforced polyimide beam. For the finite element analysis, the cracked element is modelled by the local flexibility matrix calculated on the basis of fracture mechanics using Castiligano theorem. Rotating beam is considered only transverse bending motion so that the element includes two degrees of freedom per node such as the transverse deflection and slope. The time history and frequency response function of the beam with a breathing crack are studied by Newmark direct time integration method and FFT(Fast Fourier Transform)simulation. Effects of various parameters such as the crack depths, crack locations, ply angles, volume fraction ratios, and rotating speeds of the beam are also studied. Numerical results indicate that it is more reliable to be modelled as a breathing crack than an open crack.

  • PDF

Synthesis and spectroscopic characterization of zinc ferrite nanoparticles

  • Arora, Shefali;Nandy, Subhajit;Latwal, Mamta;Pandey, Ganesh;Singh, Jitendra P.;Chae, Keun H.
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.437-451
    • /
    • 2022
  • Synthesis approaches usually affect the physical and chemical properties of ferrites. This helps ferrite materials to design them for desired applications. Some of these methods are mechanical milling, ultrasonic method, micro-emulsion, co-precipitation, thermal decomposition, hydrothermal, microwave-assisted, sol-gel, etc. These methods are extensively reviewed by taking example of ZnFe2O4. These methods also affect the microstructure and local structure of ferrite which ultimately affect the physical and chemical properties of ferrites. Various spectroscopic techniques such as Raman spectroscopy, Fourier Transform Infrared spectroscopy, Ultra Violet-Visible spectroscopy, Mossbauer spectroscopy, extended x-ray absorption fine structure, and electron paramagnetic resonance are found helpful to reveal this information. Hence, the basic principle and the usefulness of these techniques to find out appropriate information in ZnFe2O4 nanoparticles is elaborated in this review.

Distribution Mapping and Local Analysis of Ciliary Beat Frequencies (세포의 섬모 운동 변화 분석을 위한 CBF 분포도 구성 및 국소적 분포 분석에 관한 연구)

  • Yi, W.J.;Park, K.S.;Min, Y.G.;Sung, M.W.;Lee, K.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.154-160
    • /
    • 1997
  • By their rapid and periodic actions, the cilia of the human respiratory tract play an important role in clearing inhaled noxious particles. Based on the automated image-processing technique, we studied ciliary beat frequency (CBF) objectively and quantitatively. Microscopic ciliary images were transformed into digitized gray ones through an image-grabber, and from these we extracted signals or CBF. By means of a FFT, maximum peak frequencies were detected as CBFs in each partitioned block or the entire digitized field. With these CBFs, we composed distribution maps visualiy showing the spatial distribution of CBFs. Through distribution maps of CBF, the whole aspects of CBF changes or cells and the difference of CBF of neighboring cells can be easily measured and detected. Histogram statistics calculated from the user-defined polygonal window can show the local dominant frequency presumed to be the CBF of a cell or a crust the region includes.

  • PDF

The nonlocal theory solution for two collinear cracks in functionally graded materials subjected to the harmonic elastic anti-plane shear waves

  • Zhou, Zhen-Gong;Wang, Biao
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.63-74
    • /
    • 2006
  • In this paper, the scattering of harmonic elastic anti-plane shear waves by two collinear cracks in functionally graded materials is investigated by means of nonlocal theory. The traditional concepts of the non-local theory are extended to solve the fracture problem of functionally graded materials. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress field near the crack tips. To make the analysis tractable, it is assumed that the shear modulus and the material density vary exponentially with coordinate vertical to the crack. By use of the Fourier transform, the problem can be solved with the help of a pair of triple integral equations, in which the unknown variable is the displacement on the crack surfaces. To solve the triple integral equations, the displacement on the crack surfaces is expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips.