• 제목/요약/키워드: local flow condition

검색결과 229건 처리시간 0.028초

CAE를 이용한 TV Speaker Grille 사출 성형의 최적화 (Optimization Condition for Injection Molding of TV Speaker Grille Using CAE)

  • 김범호;장우진;김정훈;정지원;박영훈
    • 폴리머
    • /
    • 제25권6호
    • /
    • pp.855-865
    • /
    • 2001
  • MOLDFLOW사의 CAE S/W를 사용하여 A사의 TV speaker grille의 최적 성형 조건을 도출하였는데 캐비티 안으로 충전되는 수지의 양을 조절하는 방법 중 flow balance, runner balance, 그리고 이 두 가지를 절충한 세 가지 방법으로 유동과 보압 해석을 수행하였다. 또한 실제로 각각의 온도별 점도와 전단속도를 측정한 결과(local database)를 이용하여 해석하고, standard database에 의한 해석결과와 비교 검토하였다. Speaker grille에서 flow balance는 성형품의 weld line을 최소화함으로써 양호한 외관과 weld line의 기계적 물성 저하를 최소화시켰으나, 제품 중앙부의 과충전으로 인한 과도한 변형이나 gas가 발생하는 단점이 나타났다. Runner balance는 각 gate로부터 사출되는 수지의 양을 균등하게 조절함으로써 flow balance의 단점을 보완하였으나, weld line의 외관과 기계적 물성이 저하하는 단점이 나타났다. 그러나 flow balance와 runner balance를 절충한 형태의 runner의 직경을 변형함으로써 두 방법이 가지는 단점을 보완하였다. 또한 각각의 온도에 대한 점도와 전단속도를 실측한 local database와 기존의 standard database에 의한 해석 결과를 비교한 결과, 실측의 점도가 다소 높게 측정되고 온도 분포의 편차가 넓게 나타났음에도 불국하고 두 data의 해석 결과는 거의 차이가 없음이 확인되었다.

  • PDF

An Experimental Study on Heat Transfer Characteristics with Turbulent Swirling Flow Using Uniform Heat Flux in a Cylindrical Annuli

  • Chang, Tae-Hyun;Lee, Kwon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.2042-2052
    • /
    • 2003
  • An experimental study was performed to investigate heat transfer characteristics of turbulent swirling flow in an axisymmetric annuli. The static pressure, the local flow temperature, and the wall temperature with decaying swirl were measured by using tangential inlet conditions and the friction factor and the local Nusselt number were calculated for Re=30000∼70000. The local Nusselt number was compared with that obtained from the Dittus-Boelter equation with swirl and without swirl. The results showed that the swirl enhances the heat transfer at the inlet and the outlet of the test tube.

국부 근접 난방 모듈을 이용한 전기차 탑승자의 열쾌적성에 대한 실험적 연구 (Experimental study on Thermal Comfort of Electric Vehicle Occupants Using Local Proximity Heating Module)

  • 이채열 ;임종한;이재욱;박상희
    • 한국산업융합학회 논문집
    • /
    • 제27권3호
    • /
    • pp.655-663
    • /
    • 2024
  • In order to meet the technological demand for indoor heating systems that ensure winter thermal comfort during the transition from internal combustion engines to electrification, a localized proximity heating module using surface heating elements was developed. The operational performance of heating module was tested in the low temperature chamber. The experiment conditions were varied by changing the chamber temperature (-10, 0℃), the air flow rate (6.2, 6.0, 4.2m3/h), the heater power (100, 80, 60, 40W). Thermal comfort model was confirmed using the CBE Thermal Comfort Tool applying ASHRAE standard 55. Under -10℃ condition, thermal comfort was satisfied at 23.4, 23.2℃ at power of 100W and air flow rate 6.0, 4.6m3/h. Under 0℃ condition, at power of 80W, air flow rate 6.2, 6.0m3/h, and at power of 60W, air flow rate 4.6m3/h showed results of 25.7, 26.1, 23.0℃, respectively, satisfying thermal comfort. This study analyzed the operating performance of the local proximity heating module in the low temperature chamber and applied thermal comfort model to prove applicability of local proximity heating module using surface heating elements and how to utilize the thermal comfort model.

Flow Field Analysis on the Stagnation Streamline of a Blunt Body

  • Lee, Chang-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.149-156
    • /
    • 2016
  • The hypersonic flow on the stagnation streamline of a blunt body is analyzed with quasi one-dimensional (1-D) Navier-Stokes equations approximated by adopting the local similarity to the two-dimensional (2-D)/axisymmetric Navier-Stokes equations. The governing equations are solved using the implicit finite volume method. The computational domain is confined from the stagnation point to the shock wave, and the shock fitting method is used to find the shock position. We propose a boundary condition at the shock, which employs the shock wave angle in the vicinity of the stagnation streamline using the shock shape correlation. As a result of numerical computation conducted for the hypersonic flow over a sphere, the proposed boundary condition is shown to improve the accuracy of the prediction of the shock standoff distance. The quasi 1-D Navier-Stokes code is efficient in computing time and is reliable for the flow analysis along the stagnation streamline and the prediction of heat flux at the stagnation point in the hypersonic blunt body flow.

원형 실린더 후류 영역의 국소 열전달 특성 (Local Heat Transfer Characteristics in the Wake Region of a Circular Cylinder)

  • 장병훈
    • 에너지공학
    • /
    • 제14권1호
    • /
    • pp.30-36
    • /
    • 2005
  • 본 논문에서는 실린더 후류 영역의 열전달 특성에 대한 실험결과를 보고하였다. 정체점(θ=0°)로부터 실린더 뒷면(θ=180°)까지 국소 열전달을 측정하였으며, 축 방향에 대한 누셀트 수의 변화도 조사하였다. 덕트 중앙에 비하여 덕트 벽면근처의 후류영역 열전달계수는 58% 정도 높게 측정되었으며, 종횡비와 열전달 경계조건의 영향도 조사하였다.

원관 주위의 대류 열전달에 대한 복합 열전달 (Conjugated heat transfer on convection heat transfer from a circular tube in cross flow)

  • 이승홍;이억수;정은행
    • 설비공학논문집
    • /
    • 제10권5호
    • /
    • pp.523-534
    • /
    • 1998
  • The convection heat transfer on horizontal circular tube is studied as a conjugated heat transfer problem. With uniform heat generation in a cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer are investigated for the case of forced convection around horizontal circular tube in cross flow of air and water. Non-dimensional conjugation parameter $ K^*$ which can be deduced from the governing energy differential equation should be used to express the effect of circumferential wall heat conduction. Two-dimensional temperature distribution$ T({\gamma,\theta})$ is presented. The influence of circumferential wall heat conduction is demonstrated on graph of local Nusselt number.

  • PDF

원관 주위의 대류 열전달에서 경계조건에 대한 원주방향 열전도의 영향 (Effect of Circumferential Wall Heat Conduction on Boundary Conditions for Convection Heat Transfer from a Circular Tube in Cross Flow)

  • 이상봉;이억수;김시영
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.39-45
    • /
    • 2001
  • With uniform heat generation from the inner surface of the cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer is investigated for the case of forced convection around horizontal circular tube in cross flow of air. The wall conduction number which can be deduced from the governing energy equation should be used to express the effect of circumferential wall heat conduction. It is demonstrated that the circumferential wall heat conduction influences local Nusselt numbers of one-dimensional and two-dimensional solutions.

  • PDF

일산대교 교각세굴 평가 사례 연구 (Case Study on Local Scour Evaluation of Il-San Bridge)

  • 이주형;곽기석;박재현;정문경;윤현석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.667-676
    • /
    • 2005
  • In this research, the reasonable local scour estimates considered conditions of the bed material and the flow was accomplished on two piers P14 and P17 of Il-san bridge. Especially, the Il-san bridge was located on the lower Han-river where is influenced by the tides of In-chon, and it has hydraulic condition that can cause the bridge piers local scour because of tides at ordinary times, as well as a flood. Therefore, the local scour depth has been presented influenced by the maximum velocity of the flow when a flood after construction and the tides on construction on the basis of the standards of river design and road design, furthermore, the results was made a comparative analysis. According to the results, the local scour depth on the basis of the standards of river design was higher than it on the basis of the standards of road design(SRICOS), and the local scour depth influenced by the maximum velocity of the flow when a flood after construction was determined the final local scour depth of P14 and P17 at the Il-san bridge. It was ascertained that the local scour depth did not exceed the inserted depth of bridge foundation.

  • PDF

대기압이 가스유량측정에 미치는 영향에 관한 연구 (A Study on the Effect of the Atmospheric Pressure in the Gas Flow Measurement)

  • 정종태;하영철;이철구;허재영
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.363-369
    • /
    • 2002
  • Orifice meter is the most widely used flowmeter in custody transfer between KOGAS and city gas companies. Absolute pressure value is needed to calculate the gas flow of orifice metering system, but the gauge pressure transmitters are mainly used in the field. In case that the gauge pressure transmitters are used, the fixed value as standard atmospheric pressure(101.325kPa) is applied for the absolute pressure value. The real, local atmospheric pressures of each metering station are different from the standard condition as the altitude and weather conditions. In this study the flow calculation errors were quantitatively analyzed through examining the atmospheric pressures of 50 stations of KOGAS. The data for analysis are such like the time data of supplied gas amount, the altitude of each metering station, the time data of atmospheric pressures and altitudes of each weather observatory. The results showed that the local atmospheric pressures were different from the standard value and the gas flow calculation errors were distributed between $-0.024\%{\~}0.025\%$ based on the supplied gas amount in the year 1999 and 2000.

  • PDF

Prediction of scour around single vertical piers with different cross-section shapes

  • Bordbar, Amir;Sharifi, Soroosh;Hemida, Hassan
    • Ocean Systems Engineering
    • /
    • 제11권1호
    • /
    • pp.43-58
    • /
    • 2021
  • In the present work, a 3D numerical model is proposed to study local scouring around single vertical piers with different cross-section shapes under steady-current flow. The model solves the flow field and sediment transport processes using a coupled approach. The flow field is obtained by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations in combination with the k-ω SST turbulence closure model and the sediment transport is considered using both bedload and suspended load models. The proposed model is validated against the empirical measurements of local scour around single vertical piers with circular, square, and diamond cross-section shapes obtained from the literature. The measurement of scour depth in equilibrium condition for the simulations reveal the differences of 4.6%, 6.7% and 13.1% from the experimental measurements for the circular, square, and diamond pier cases, respectively. The model displayed a remarkable performance in the prediction of scour around circular and square piers where horseshoe vortices (HSVs) have a leading impact on scour progression. On the other hand, the maximum deviation was found in the case of the diamond pier where HSVs are weak and have minimum impact on the formation of local scour. Overall, the results confirm that the prediction capability of the present model is almost independent of the strength of the formed HSVs and pier cross-section shapes.