Under the conditional independence assumption among local features, the Naive Bayes Nearest Neighbor (NBNN) classifier has been recently proposed and performs classification without any training or quantization phases. While the original NBNN shows high classification accuracy without adopting an explicit training phase, the conditional independence among local features is against the compositionality of objects indicating that different, but related parts of an object appear together. As a result, the assumption of the conditional independence weakens the accuracy of classification techniques based on NBNN. In this work, we look into this issue, and propose a novel Bayesian network for an NBNN based classification to consider the conditional dependence among features. To achieve our goal, we extract a high-level feature and its corresponding, multiple low-level features for each image patch. We then represent them based on a simple, two-level layered Bayesian network, and design its classification function considering our Bayesian network. To achieve low memory requirement and fast query-time performance, we further optimize our representation and classification function, named relation-based Bayesian network, by considering and representing the relationship between a high-level feature and its low-level features into a compact relation vector, whose dimensionality is the same as the number of low-level features, e.g., four elements in our tests. We have demonstrated the benefits of our method over the original NBNN and its recent improvement, and local NBNN in two different benchmarks. Our method shows improved accuracy, up to 27% against the tested methods. This high accuracy is mainly due to consideration of the conditional dependences between high-level and its corresponding low-level features.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.3
/
pp.1390-1403
/
2016
Facial expression recognition (FER) plays a very significant role in computer vision, pattern recognition, and image processing applications such as human computer interaction as it provides sufficient information about emotions of people. For video-based facial expression recognition, depth cameras can be better candidates over RGB cameras as a person's face cannot be easily recognized from distance-based depth videos hence depth cameras also resolve some privacy issues that can arise using RGB faces. A good FER system is very much reliant on the extraction of robust features as well as recognition engine. In this work, an efficient novel approach is proposed to recognize some facial expressions from time-sequential depth videos. First of all, efficient Local Binary Pattern (LBP) features are obtained from the time-sequential depth faces that are further classified by Generalized Discriminant Analysis (GDA) to make the features more robust and finally, the LBP-GDA features are fed into Hidden Markov Models (HMMs) to train and recognize different facial expressions successfully. The depth information-based proposed facial expression recognition approach is compared to the conventional approaches such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Linear Discriminant Analysis (LDA) where the proposed one outperforms others by obtaining better recognition rates.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.1
/
pp.131-146
/
2021
Multimodal biometric-based recognition has been an active topic because of its higher convenience in recent years. Due to high user convenience of finger, finger-based personal identification has been widely used in practice. Hence, taking Finger-Print (FP), Finger-Vein (FV) and Finger-Knuckle-Print (FKP) as the ingredients of characteristic, their feature representation were helpful for improving the universality and reliability in identification. To usefully fuse the multimodal finger-features together, a new robust representation algorithm was proposed based on hierarchical model. Firstly, to obtain more robust features, the feature maps were obtained by Gabor magnitude feature coding and then described by Local Binary Pattern (LBP). Secondly, the LGBP-based feature maps were processed hierarchically in bottom-up mode by variable rectangle and circle granules, respectively. Finally, the intension of each granule was represented by Local-invariant Gray Features (LGFs) and called Hierarchical Local-Gabor-based Gray Invariant Features (HLGGIFs). Experiment results revealed that the proposed algorithm is capable of improving rotation variation of finger-pose, and achieving lower Equal Error Rate (EER) in our homemade database.
The local environmental effects on the active galactic nucleus(AGN) activity has been studied by many authors, but there is still controversy. We performed statistical analysis for nearby(0.01 < z < 0.05) volume limited(Mr < -19) sample via visual inspection based on Sloan Digital Sky Survey Data Release7. We visually inspect around 50,000 galaxy images to find peculiar objects which show not only ongoing merging features and tidal features, but also post merging features like shell or ring structures. We found that the frequency of AGN host galaxies is at least 2 times higher among peculiar galaxies than non-peculiar galaxies, and this trend is still visible when galaxy properties such as color or stellar mass are fixed. Furthermore, L[OIII] of peculiar galaxies is found to be more increased than those of normal galaxies. The majority of the most luminous AGN hosts show peculiar feature, which indicates that the luminous AGN galaxies may be the result of the local environmental effects. In addition, the enhancement of L[OIII] in peculiar galaxies is more significant for bluer galaxies, which implies that AGN activity is enhanced effectively when gas is available. In order to ensure our results, we also checked it for a smaller subsample with 2 magnitude deeper monochromatic images provided by SDSS Stripe82 database, and found consistent results. Overall, the results of this study tell us that the local environment of galaxies affects the frequency as well as the strength of AGN activity.
Anh-Thuan Tran;Tae Ho Lee;Hoanh-Su Le;Philjoo Choi;Suk-Hwan Lee;Ki-Ryong Kwon
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.528-529
/
2023
Due to vast points and irregular structure, labeling full points in large-scale point clouds is highly tedious and time-consuming. To resolve this issue, we propose a novel point-based transformer network in weakly-supervised semantic segmentation, which only needs 0.1% point annotations. Our network introduces general local features, representing global factors from different neighborhoods based on their order positions. Then, we share query point weights to local features through point attention to reinforce impacts, which are essential in determining sparse point labels. Geometric encoding is introduced to balance query point impact and remind point position during training. As a result, one point in specific local areas can obtain global features from corresponding ones in other neighborhoods and reinforce from its query points. Experimental results on benchmark large-scale point clouds demonstrate our proposed network's state-of-the-art performance.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.3
/
pp.1155-1172
/
2015
In this paper, we propose a novel saliency detection framework based on illumination invariant features to improve the accuracy of the saliency detection under the different light conditions. The proposed algorithm is divided into three steps. First, we extract the illuminant invariant features to reduce the effect of the illumination based on the local sensitive histograms. Second, a preliminary saliency map is obtained in the CIE Lab color space. Last, we use the region growing method to fuse the illuminant invariant features and the preliminary saliency map into a new framework. In addition, we integrate the information of spatial distinctness since the saliency objects are usually compact. The experiments on the benchmark dataset show that the proposed saliency detection framework outperforms the state-of-the-art algorithms in terms of different illuminants in the images.
Considering video copy transform diversity, a multi-feature video copy detection algorithm based on a Speeded-Up Robust Features (SURF) local descriptor is proposed in this paper. Video copy coarse detection is done by an ordinal measure (OM) algorithm after the video is preprocessed. If the matching result is greater than the specified threshold, the video copy fine detection is done based on a SURF descriptor and a box filter is used to extract integral video. In order to improve video copy detection speed, the Hessian matrix trace of the SURF descriptor is used to pre-match, and dimension reduction is done to the traditional SURF feature vector for video matching. Our experimental results indicate that video copy detection precision and recall are greatly improved compared with traditional algorithms, and that our proposed multiple features algorithm has good robustness and discrimination accuracy, as it demonstrated that video detection speed was also improved.
Journal of the Korean Institute of Rural Architecture
/
v.16
no.1
/
pp.1-8
/
2014
This study investigated the characteristics of the establishment of an architectural guideline which is an important element of a urbanscape plan in basic landscape plans established by four local governments(a county level) in Jeollanam-do since the enactment of the landscape law. The results were as follows. The guideline for landscape plan elements was closely associated with shapes, materials, harmony, and coherence. For the detailed guideline for landscape plan elements, an architectural guideline on the arrangement, height, facade, and roof shapes of buildings, which is one of important elements related to urbanscape, was similar in local governments, showing a standard and uniform tendency. It indicates the limitation of forming urbanscape to enhance local identity and unique features and complementary contents are needed. The color guideline was classified into base color, sub color, and accent color in consideration of local features. In particular, natural material color was commonly used for base and sub color in all local governments. Therefore, it is necessary to develop unique material color and distinctive local color for each region.
Lim, Kil-Taek;Kang, Hyunwoo;Han, Byung-Gil;Lee, Jong Taek
IEMEK Journal of Embedded Systems and Applications
/
v.9
no.5
/
pp.261-268
/
2014
Face detection is essential to the full automation of face image processing application system such as face recognition, facial expression recognition, age estimation and gender identification. It is found that local image features which includes Haar-like, LBP, and MCT and the Adaboost algorithm for classifier combination are very effective for real time face detection. In this paper, we present a face detection method using local pixel direction code(PDC) feature and lookup table classifiers. The proposed PDC feature is much more effective to dectect the faces than the existing local binary structural features such as MCT and LBP. We found that our method's classification rate as well as detection rate under equal false positive rate are higher than conventional one.
Few-shot learning is a sub-area of machine learning problems, which aims to classify target images that only contain a few labeled samples for training. As a representative few-shot learning method, the Prototypical network has been received much attention due to its simplicity and promising results. However, the Prototypical network uses the sample mean of samples from the same class as the prototypes of that class, which easily results in learning uncharacteristic features in the low-data scenery. In this study, we propose to use local descriptors (i.e., patches along the channel within feature maps) from the same class to explicitly obtain more representative prototypes for Prototypical Network so that significant intra-class feature information can be maintained and thus improving the classification performance on few-shot learning tasks. Experimental results on various benchmark datasets including mini-ImageNet, CUB-200-2011, and tiered-ImageNet show that the proposed method can learn more discriminative intra-class features by the local descriptors and obtain more generic prototype representations under the few-shot setting.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.