• Title/Summary/Keyword: local deposition in a channel

Search Result 14, Processing Time 0.017 seconds

A Preliminary Geomorphic Overview of Late Quaternary Glacier Fluctuations in the South Shetland Islands, West Antarctica (서남극 남쉐틀랜드 군도의 제4기 후기 빙하 활동의 지형학적 고찰)

  • Lim, Hyoun-Soo;Yoon, Ho-Il;Lee, Yong-Il;Kim, Yea-Dong;Owen Lewis A.;Seong, Yeong-Bae
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.5 s.116
    • /
    • pp.513-526
    • /
    • 2006
  • The timing and extent of glaciations during the Late Quaternary in the South Shetland Islands, West Antarctica were defined using field mapping, geomorphic analysis and radiocarbon dating. Landforms of glacial erosion and deposition, in particular subglacial meltwater channel erosion, suggest that at least three glaciations occurred during the late Quaternary within the study region. During the global LGM, glacial troughs (such as Maxwell Bay and Admiralty Bay) were overdeepened by an ice stream moving south from $an\sim1000m-thick$ ice cap centered on the present-day continental shelf to the north. This ice was responsible for the subglacial meltwater channel erosion, and glacial polished and striated bedrock on the Fildes Peninsula. The recent local glaciations occurred about 2,000 years ago and during Little Ice Age (LIA). During these glaciations, glaciers were less extensive than the previous one and less erosive as a cold-based ice

Derivation Method of Rating Curve and Relationships for Flow Discharge-Total Sediment at Small-Midium Streams in Agrarian Basin (농경유역 중소하천에서 유량과 총유사량의 관계식 유도방법)

  • Lee, Jong-Seok;Kim, Chi-Gon;You, Eui-Geen
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.8
    • /
    • pp.544-555
    • /
    • 2015
  • This study aims to derivate of the relationship and rating curve for the flow discharge-total sediment using the measured field data from the main points of small-medium stream reaches in agrarian basin. The total sediment of measured data are obtained by bed load added to suspended load which analyzed using the particle size distribution curve of sieve test and the dry or the filtration method from the collected samples by samplers (DH-48, D-74 and BLH-84, BL-84) at the stream bed and the depth-averaged concentration, respectively. These field data had been collected from August 2012 to September 2014 at the seven measuring stations of the national-local channel reaches of the four study streams in the Nonsan river systems of agrarian basin. As a result, the relationships and the rating curve for the flow discharge-total sediment are derived as a function pattern of power law by analyzing on a distribution characteristic of the database set and it will be used as a useful tool to analyze erosion, deposition, and transportation in theoretical research as well as in practical application of the hydraulic sedimentation engineering.

Scattering characteristics of metal and dielectric optical nano-antennas

  • Ee, Ho-Seok;Lee, Eun-Khwang;Song, Jung-Hwan;Kim, Jinhyung;Seo, Min-Kyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.76.1-76.1
    • /
    • 2015
  • Optical resonances of metallic or dielectric nanoantennas enable to effectively convert free-propagating electromagnetic waves to localized electromagnetic fields and vice versa. Plasmonic resonances of metal nanoantennas extremely modify the local density of optical states beyond the optical diffraction limit and thus facilitate highly-efficient light-emitting, nonlinear signal conversion, photovoltaics, and optical trapping. The leaky-mode resonances, or termed Mie resonances, allow dielectric nanoantennas to have a compact size even less than the wavelength scale. The dielectric nanoantennas exhibiting low optical losses and supporting both electric and magnetic resonances provide an alternative to their metallic counterparts. To extend the utility of metal and dielectric nanoantennas in further applications, e.g. metasurfaces and metamaterials, it is required to understand and engineer their scattering characteristics. At first, we characterize resonant plasmonic antenna radiations of a single-crystalline Ag nanowire over a wide spectral range from visible to near infrared regions. Dark-field optical microscope and direct far-field scanning measurements successfully identify the FP resonances and mode matching conditions of the antenna radiation, and reveal the mutual relation between the SPP dispersion and the far-field antenna radiation. Secondly, we perform a systematical study on resonant scattering properties of high-refractive-index dielectric nanoantennas. In this research, we examined Si nanoblock and electron-beam induced deposition (EBID) carbonaceous nanorod structures. Scattering spectra of the transverse-electric (TE) and transverse-magnetic (TM) leaky-mode resonances are measured by dark-field microscope spectroscopy. The leaky-mode resonances result a large scattering cross section approaching the theoretical single-channel scattering limit, and their wide tuning ranges enable vivid structural color generation over the full visible spectrum range from blue to green, yellow, and red. In particular, the lowest-order TM01 mode overcomes the diffraction limit. The finite-difference time-domain method and modal dispersion model successfully reproduce the experimental results.

  • PDF

A Study on the Installation of Groyne using Critical Movement Velocity and Limiting Tractive Force (이동한계유속과 한계소류력을 활용한 수제 설치에 관한 연구)

  • Kim, Yeong Sik;Park, Shang Ho;An, Ik Tae;Choo, Yeon Moon
    • Journal of Wetlands Research
    • /
    • v.22 no.3
    • /
    • pp.194-199
    • /
    • 2020
  • Unlike in the past, the world is facing water shortages due to climate change and difficulties in simultaneously managing the risks of flooding. The Four Major Rivers project was carried out with the aim of realizing a powerful nation of water by managing water resources and fostering the water industry, and the construction period was relatively short compared to the unprecedented scale. Therefore, the prediction and analysis of how the river environment changes after the Four Major Rivers Project is insufficient. Currently, part of the construction section of the Four Major Rivers Project is caused by repeated erosion and sedimentation due to the effects of sandification caused by large dredging and flood-time reservoirs, and the head erosion of the tributaries occurs. In order to solve these problems, the riverbed maintenance work was installed, but it resulted in erosion of both sides of the river and the development of new approaches and techniques to keep the river bed stable, such as erosion and excessive sedimentation, is required. The water agent plays a role of securing a certain depth of water for the main stream by concentrating the flow so much in the center and preventing levee erosion by controlling the flow direction and flow velocity. In addition, Groyne products provide various ecological environments by forming a natural form of riverbeds by inducing local erosion and deposition in addition to the protection functions of the river bank and embankment. Therefore, after reviewing the method of determining the shape of the Groyne structure currently in use by utilizing the mobile limit flow rate and marginal reflux force, a new Critical Movement Velocity(${\bar{U}}_d$) and a new resistance coefficient formula considering the mathematical factors applicable to the actual domestic stream were developed and the measures applicable to Groyne installation were proposed.